Notes on the Drude Model

Assumptions of the Drude Model

The Drude model provides a classical mechanics approach to describing
conductivity in metals. This model makes several key assumptions (some of
which are better approximations than others).

Electrons in a metal behave much like particles in an ideal gas (no Coulombic
interaction and no collisions between particles). This is called the independent
electron approximation.

Positive charges are located on immobile ions. The electrons do not experience
coulombic interaction with the ions, but they do collide with the ions and can
change direction and velocity.

Electrons reach thermal equilibrium by collisions with the ions. Their mean kinetic
energy within the lattice at equilibrium is given below. The mass of an electron is
represented as me, the average velocity at a given temperature is vr, the
Boltzmann constant is ks, and the temperature in Kelvin is T. At room
temperature, vt is about 10° m/s.
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The average distance of an electron’s free movement between collisions is called
the mean free path A. For metals, the mean free path is typically estimated as 1
nm based on known ionic packing parameters. To calculate the mean time 1

between collisions (called the relaxation time), the equation T=A/vT is used.

Applying the Drude Model

To apply the Drude model, the density of the “gas” formed by the free electrons
must be known. This parameter is called the conduction electron density n (the
number of free electrons per volume).

The conduction electron density is computed by assuming that each atom
contributes Zv conducting electrons. Zv represents the number of outer shell
electrons for metal atoms in the ionic lattice. For instance, alkaline Earth metals
have a Zv value of 2. Given the density pm in kg/m? and the atomic mass M in kg
per atom, the conduction electron density is Zvpm/M.

Given the average time for a collision-free drift 1, the average drift velocity of an
electron in a metal can be computed using the equation below. Here, e
represents the charge of an electron in Coulombs and € is electromotive force in
volts (a vector quantity).
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The number of electrons passing through a given area per unit time Je and the
amount of charge passing through a given area per unit time Jc are given below.
Here, n is the number of electrons.
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The current density j is computed by the equation below.
j=—env

This can be used to derive the following expression, which is equivalent to Ohm’s
law V=IR.
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As such, the conductivity o and the resistivity p are given by the equations below.
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The mobility y of an electron in a lattice is given below. The mobility can be
interpreted as the ratio of the drift velocity to the applied electric field.
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Using mobility, conductivity and resistivity can be computed by alternative
formulas.
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Figure 1 Measured and calculated conductivities for various metals at 273 K
(left) and 77 K (right) as a function of electron density. The black lines indicate
conductivities computed via the Drude model while the names of the metals
indicate measured conductivities. Note that the calculations assume mean
free paths of 1 nm and that the model loses efficacy at lower temperatures.

The Drude Model and the Hall Effect

The Drude model explains the Hall effect, a phenomenon in which an electric
field En arises perpendicular to both the current density jx (which points in the
direction of electron movement) and the magnetic field B-.

The Hall effect occurs when a current flows through a conductor while under a
magnetic field. As a result of the magnetic field, positive charges accumulate on
one side of the conductor (and negative charges on the other side).



Figure 2 The Hall effect. The magnetic field B:
induces a transverse-oriented dipole across the
conductor, giving rise to an electric field En.

For electrons to pass through the given region, the field €+ must cancel the
Lorenz force which acts in the opposite direction (the Lorenz force is the sum
FL=gE+qvxB of the magnetic force and electric force on a moving charged
particle). The magnitude of the Hall field is given below. R4 is called the Hall
coefficient and can be measured experimentally.
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As the value of Rn approaches one, the field €1 more exactly cancels the Lorenz
force. The value of Ru varies between types of metals, so some metals are better
conductors than others.

The Drude Model and Optical Reflectivity of Metals

Light can be described as an electromagnetic wave in the form of a transverse
plane.

The electric field for light in the propagating in the z direction is given by the
equation below. €o is the amplitude in the xy plane, Ao is the wavelength in a
vacuum, n is the index of refraction, and k is a parameter that accounts for
attenuation of the light’s intensity inside of a given material.
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Alternatively, the equation for the electric field of light propagating in the z
direction can be expressed using the dielectric constant of the given material.
E(Z, t) — Eoel((w\/E/C )Z_(l)t)

An electron within the electric field from an electromagnetic wave moves
according to the following equation of motion (derived from F=ma). Note that the
charge —e and the exponential are distinct.
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Solving the differential equation above gives the following result.
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As a result of the electric field from the electromagnetic wave, the electron
undergoes positional displacement in a periodic manner. This leads to a
changing dipole moment given by —ex(t).
Dielectric functions describe the permittivity of given media over time. Permittivity
is the amount of charge needed to generate a single unit of electric flux within the
medium. Using the above results and some other known formulas, the dielectric
function for a material can be derived.
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By setting a parameter wp? equal to ne?/meto, the dielectric function can be
rewritten as below. Note that we is called the plasma frequency.

For w<wp, the value of ¢ is real and negative, making the square root of € purely
imaginary. As such, the light does not transmit into the metal in this case. Since
energy is conserved, the light is reflected instead.

For w>wp, the value of ¢ is real and positive. As such, the light does propagate
into the metal in this case.

Metals reflect low-frequency light and are transparent for high-frequency light.
The transition occurs at the plasma frequency we.

The plasma frequency can be measured experimentally or calculated using the
conduction electron density n.

The Drude Model and the Wiedemann-Franz Law

Thermal conductivity is defined by the equation below where Q is the amount of
heat transferred per time t, k is the thermal conductivity constant for a given
material, A is the cross-sectional area, d is the thickness of the material, and AT
is the difference in temperature across the material. Note that this definition only
describes the simple 1-dimensional case, but analogous formulas can be used
for more general situations.
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The Wiedemann-Franz law states that, for any metal at a given temperature, the
ratio of thermal conductivity k to electrical conductivity o is a constant L.

Furthermore, L is proportional to temperature as temperature varies. L is called
the Lorenz number.
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The ideal gas-related equations from the Drude model can be used to generate
an equivalent formula for LT. Despite some minor inconsistencies with
experimental data, this theoretical calculation often gives strikingly accurate
results.
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Shortcomings of the Drude Model

The Drude model does not take into account collisions between electrons
themselves. It also does not consider electrostatic interactions between the
electrons and the lattice ions.

The de Broglie wavelengths of electrons with some thermal energy are on the
nanometer scale. This means that electrons cannot be treated as classical
particles (since they have substantial wave character) under the conditions of the
Drude model.

As mentioned, the Drude model underestimates conductivity of metals at low
temperatures. This is because the assumption of a constant mean free path
(based on atomic spacing) is incorrect. The mean free path varies greatly with
temperature, particularly in pure crystalline substances.

The Drude model cannot explain the conductivity of alloys. Even small impurities
can drastically decrease the conductivity of metals in a way which is not
predicted by the Drude model.

From a classical mechanics perspective, the electrons should contribute greatly
to the heat capacity of metals. But this result does not agree with experimental
data (and using quantum mechanical models instead resolves the issue).

Reference: Hofmann, P. (2015). Solid State Physics: An Introduction. Wiley.



