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Homogenous and heterogenous populations of neurons 

• The simplest type of neural mass model involves assuming a homogenous 
population of neurons. This means that all neurons are coupled to each other 
and to themselves with an equal interaction strength wij=w0. In graph theoretic 
terms, this is a complete graph with self-edges at every vertex. Furthermore, all 
neurons receive the same amount of externally applied current Iext(t). As a 
consequence of these approximations, this type of model can only be used for 
large populations of neurons. 

• Neural coupling strengths that are less than zero are inhibitory. Neural coupling 
strengths that are greater than zero are excitatory. 

• Population activity is defined by the equation below. Note that this equation is not 
specific to homogenous populations, it can be used for many other types of 
models as well. N refers to the total number of neurons in the population while 
nspikes counts the number of spikes between time t and a subsequent time t+Δt. 
The δ is the Dirac delta function and tjf is the time at which neuron j fires. 
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• The electrophysiological activities of integrate-and-fire neurons are defined by 
the following differential equation and its solutions where τm is the membrane 
time constant (which equals the membrane resistance R times the membrane 
capacitance C), I(t) is the input current, and u is the membrane voltage. If the 
value of u passes a threshold ϴ, then a spike occurs and u is reset to the resting 
potential urest. 
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𝑢𝑖(𝑡) = 𝑢rest + (1 − 𝑒−𝑡/𝜏)𝑅𝐼0 

 

• One of the tools necessary for describing the activity of a homogenous 
population of integrate-and-fire neurons is a function α(t – tif) which represents 
the postsynaptic current generated by an input spike. Depending on the shape of 
the curve used to model the postsynaptic current, α(t – tif) might take on different 
forms. 

• With all neurons are coupled to each other (and to themselves) in a homogenous 
population, the total current in any given neuron is the externally applied current 
plus the sum of all postsynaptic currents from input spikes multiplied by each 
interaction weight wij. 
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• For homogenous populations with homogenous all-to-all coupling and a constant 
interaction strength w0, the total current is the same in every neuron. This current 
is given by the following equation (since we can assume a continuum for a large 
population of neurons). The reason that the integral is multiplied by w0N is that 
every neuron is connected to the given neuron. Here, s represents the time at 
which a spike occurs. 
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• Consider a population in which each neuron has slightly different parameters 
from the others such that the firing rates ri(I(t)) vary over the population despite 
each neuron receiving the same input current. If the population is large, then the 
function which describes the variation in firing rate can be linearized around the 
average firing rate (and neglecting the higher-order terms of the Taylor series). 
As such, this simplification (the linearized model) can still be useful for some 
applications. 
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• The above expression can also be thought of as indicating that the mean firing 
rate of the population is equal to the firing rate of a “typical” neuron (with “typical” 
parameters) in the population. 

• In cases that involve more dramatic variations within populations of neurons, the 
averaging technique described above is insufficient. For instance, consider a 
population in which half the neurons are described by a set of parameters p1 and 
the other half by a set of significantly different parameters p2. This population 
should be split and regarded as two homogenous populations.  

• Indeed, any population composed of subsets which differ significantly from each 
other should be decomposed into the homogenous subsets. The same applies to 
populations composed of neurons with identical parameters, but with subsets 
that receive significantly different input currents. 

 
Connectivity schemes and scaling 

• Using these techniques, populations of different sizes can give similar results if a 
scaling law is applied to the connection weights. For a homogenous population 
with all-to-all connectivity, the appropriate scaling law is as follows. J0 is the 
number of neurons before scaling and N is the number of neurons after scaling. 
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• Increasing the size of a population while keeping its connectivity the same allows 
for noise reduction. This is especially useful since some populations are quite 
small. For instance, a single layer within a cortical column might have only a few 
hundred neurons. 

• Another all-to-all coupling model involves using a Gaussian distribution of 
weights with the following mean and standard deviation (σ0 is the standard 
deviation of weights prior to scaling). 
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• Populations can also be modeled by setting a fixed coupling probability p (among 
N2 possible connections). In this type of model, the mean number of connections 
to a neuron j is then given by pN and the variance is p(1 – p)N. Alternatively, 
each neuron j can send outputs to pN partners. To scale a population with a fixed 
coupling probability, the equation below is used so that the average number of 
inputs to each neuron does not change as the population size changes. 
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• Some simulations can assume a balanced population of excitatory and inhibitory 
neurons. In such cases, the mean input current is zero, so scaling the connection 
weights does not influence the mean. Instead, the weights should be scaled with 
respect to how they affect fluctuations about zero. This can be achieved using 
the following scaling equation. 
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Interacting populations 

• In the previous sections, 
balanced populations of 
excitatory and inhibitory 
neurons were used. Now, 
consider homogenous 
populations each consisting 
of either excitatory or 
inhibitory neurons, but not both.  

• These populations can be visualized as spatially separated from each other, but 
this is not necessary for the model to work (and it is not biologically realistic). The 
populations could just as easily be spatially mixed. 



• The activity of neurons in homogenous population n is given by the equation 
below. The parameter Γn represents the set of neurons belonging to population n.  
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• With all-to-all coupling, each neuron i within pool n is assumed to receive inputs 
from every neuron j within pool m. The connection strength is wij=JnmNm where 
Jnm is the strength of an individual coupling from a neuron in pool m to a neuron 
in pool n and Nm is the number of neurons in pool m. As such, the input current to 
a neuron i will come from all the spikes in the network. Once again, α represents 
some given type of postsynaptic voltage-time function after an input current. 
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• The input current can also be formulated by the equation below. Since the model 
provides identical input current to all neurons, the index i can be removed. Once 
again, s represents the time at which a spike occurs. 
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Distance-dependent connectivity 

• To better model neural 
populations, distance can 
provide an approximate 
measure for coupling 
probability (with more 
distant neurons having a 
lower probability of 
coupling). It should be 
noted that this is still a 
very rough model. 

• In order to create a model with distance-dependent connectivity, each neuron i 
must be assigned a location x(i) on a two-dimensional cortical sheet.  

• For this type of model, all connections are assigned the same weight and the 
connection probability depends on distance (see part A of the diagram). P is a 
function which maps any vector to a real number on the interval [0,1].  

 

𝑃𝑟𝑜𝑏(𝑤𝑖𝑗 = 1) = 𝑃(|𝒙(𝑖) − 𝒙(𝑗)|) 

 

• Alternatively, all-to-all coupling can be assumed with a strength wij that 
decreases with distance (see part B of the diagram). This is modeled by the 



following equation where g is a function that maps any vector to a real number. 
(For example, a Euclidean length metric inside of a decaying exponential). 
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Spatial continuum models 

• Many neural populations in the brain exhibit properties which continuously vary 
across space (i.e. tonotopy and retinotopy). Of course, this kind of variation is not 
actually continuous at the level of individual neurons, but it is effectively 
continuous from the perspective of population modeling. Sets of homogenous 
populations cannot account for such continuous variation, so spatial continuum 
models must be used when considering this kind of functional organization. 

• Consider a continuum of neurons along a one-dimensional axis and assume all-
to-all coupling with connection strength dependent upon distance. This model 
uses the equation wij = g(|x(i) – x(j)|) 
as described in the previous section. 
Then discretize space into segments 
of length d. The number of neurons in 
a segment n is given by the following 
equation where ρ represents the 
density of neurons. Neurons within 
this interval belong to the set Γm. 

 
𝑁𝑚 = 𝜌𝑑 

 

• For continuum models, the population activity of population m is described as a 
function of time and of the spatial position of the neurons belonging to population 
m. The latter is given by md since the distance along the axis is equal to the 
segment length times the index m. 

• The coupling strength between a neuron x(i) at location nd and a neuron x(j) at 
location md is a function w(nd,md) that defines a weighting measure depending 
on the distance between the two locations nd and md. 

• As such, the input current to a neuron in population m is computed using the 
following equation (top). The product of an input current from population n with 
the population activity induced in population m is found inside of the summation. 
All input currents to population m from the rest of the populations are then 
summed. For a large number of populations, this equation can be replaced by an 
equation with a second integral. For convenience, md has been replaced with y 
in these equations. 
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