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Elastic fiber models

For an elastic fiber in which a linear relationship between force and change in
length is assumed, the force is given by F = k(L — Lo).

To normalize for other elastic fibers with different starting lengths, this equation is
divided by Lo to give F = k(L/Lo — 1). It is common practice to represent L/Lo as a
parameter A (called the stretch ratio).

As such, F is found using the formula below. Note that the quantity A — 1 is
referred to as the strain.

F=k(l-1)

While linear models are often useful, many real fibers exhibit finite extensibility (a
nonlinear phenomenon) after exceeding a certain critical strain value Ac. That is,
the force necessary to extend the fiber farther after exceeding Ac increases
rapidly. Finite extensibility can be modeled using the following equation which
divides k by a term dependent on A and Ac.
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To model a muscle, let Lo represent the muscle’s length in its inactive state and
Lcontracted represent the muscle’s length in its contracted state. Unlike the spring,
the contracted state is used as the reference length. The contraction stretch is

described by the ratio Acontracted = Lcontracted/Lo While the stretch ratio remains as A =
L/Lo.
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If this muscle is contracted without carrying a load such that F = 0, then A =
Acontracted. If the muscle acquires a load and so must maintain a constant length
equal to its original length Lo (to “hold the load steady”), then the force in the
muscle is F = k(1/)\contracted -1).
To generalize this model for 3-dimensional space, the locations of the fiber’s
endpoints A and B are used. The fiber’s length and orientation are given below.
L= | A
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The following force vectors can act on point B and on point A. The stretch ratio is
still A = L/Lo.



Viscous fiber models

Purely viscous behavior (as with liquids) can be described 1-dimensionally using
the equation below where cn is a damping coefficient.
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The normalized rate of deformation is equivalent to the above formula without the
damping coefficient. In addition, the rate of deformation can be written in terms of
the stretch ratio A = L/Lo.

1dL  1dA
Pel@~ia
If one endpoint of a filament of fluid is moved with constant velocity, its position is
given by xs = Lo + vt. This means that the rate of deformation is v/xs.
1dL v
TLdt Lg+ut
Solving the above equation gives the following result. For a constant rate of
elongation, the point xs must be displaced exponentially over time.
L = LyePt
Given endpoint displacements ua and us, the total displacement is AL = ug — ua.

Using this quantity, the stretch A and the strain € can be written using the
equations below.
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For the small strains (i.e. |€| is much less than 1) that result from small stretches,

some approximations can be made which reduce the force equation to the

following form.

de

F=c,—
“1a¢

Viscoelastic fiber models

Many biological materials exhibit viscoelastic behavior rather than elastic
behavior. In viscoelastic systems, the force on a fiber with a constant length
decreases over time and applying constant force causes the length to increase.
The strain response of a fiber to force is given as €(t). The creep function J(t)
describes the fiber's tendency to permanently deform as strain is applied. Many
possible creep functions can be devised depending on the system. The creep
function is related to the strain by a factor of force increase Fo.

e(t) =J(O)F,

Strain responses follow the principle of superposition. That is, if a force is applied
at 11 and then another force is applied at T2, a total strain response can be
expressed as a sum of the two individual strain responses.

e(t) = &(t) + () = Jt —1)F +](t — 1)F;



e For an arbitrary history of applied forces, an integral formulation of strain
response is used. In this equation, the change in force at each infinitesimal time
interval is multiplied by the creep function.
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e Similarly, the force resulting from an imposed strain history can be expressed as
an integral where G is a function that describes the relaxation of the fiber with
time (analogous to the creep function, but the opposite concept).
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