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Elastic fiber models 

• For an elastic fiber in which a linear relationship between force and change in 
length is assumed, the force is given by F = k(L – L0).  

• To normalize for other elastic fibers with different starting lengths, this equation is 
divided by L0 to give F = k(L/L0 – 1). It is common practice to represent L/L0 as a 
parameter λ (called the stretch ratio).  

• As such, F is found using the formula below. Note that the quantity λ – 1 is 
referred to as the strain. 

 

𝐹 = 𝑘(𝜆 − 1) 
 

• While linear models are often useful, many real fibers exhibit finite extensibility (a 
nonlinear phenomenon) after exceeding a certain critical strain value λc. That is, 
the force necessary to extend the fiber farther after exceeding λc increases 
rapidly. Finite extensibility can be modeled using the following equation which 
divides k by a term dependent on λ and λc. 

 

𝐹 =
𝑘(𝜆 − 1)

1 −
𝜆 − 1
𝜆𝑐 − 1

=
𝑘(𝜆 − 1)(𝜆𝑐 − 1)

𝜆𝑐 − 𝜆
 

 

• To model a muscle, let L0 represent the muscle’s length in its inactive state and 
Lcontracted represent the muscle’s length in its contracted state. Unlike the spring, 
the contracted state is used as the reference length. The contraction stretch is 
described by the ratio λcontracted = Lcontracted/L0 while the stretch ratio remains as λ = 
L/L0. 

 

𝐹 = 𝑘 (
𝜆

𝜆contracted
− 1) 

 

• If this muscle is contracted without carrying a load such that F = 0, then λ = 
λcontracted. If the muscle acquires a load and so must maintain a constant length 
equal to its original length L0 (to “hold the load steady”), then the force in the 
muscle is F = k(1/λcontracted – 1). 

• To generalize this model for 3-dimensional space, the locations of the fiber’s 
endpoints A and B are used. The fiber’s length and orientation are given below. 

 

𝐿 = |𝒙𝐵 − 𝒙𝐴|, 𝒂 =
𝒙𝐵 − 𝒙𝐴

|𝒙𝐵 − 𝒙𝐴|
 

 

• The following force vectors can act on point B and on point A. The stretch ratio is 
still λ = L/L0. 

 

𝑭𝐵 = 𝑘(𝜆 − 1)𝒂,          𝐹𝐴 = −𝑘(𝜆 − 1)𝒂 
 

 



Viscous fiber models 

• Purely viscous behavior (as with liquids) can be described 1-dimensionally using 
the equation below where cη is a damping coefficient. 

 

𝐹 =
𝑐𝜂

𝐿

𝑑𝐿

𝑑𝑡
  

 

• The normalized rate of deformation is equivalent to the above formula without the 
damping coefficient. In addition, the rate of deformation can be written in terms of 
the stretch ratio λ = L/L0. 

 

𝐷 =
1

𝐿

𝑑𝐿

𝑑𝑡
=

1

𝜆

𝑑𝜆

𝑑𝑡
 

 

• If one endpoint of a filament of fluid is moved with constant velocity, its position is 
given by xB = L0 + vt. This means that the rate of deformation is v/xB. 

 

𝐷 =
1

𝐿

𝑑𝐿

𝑑𝑡
=

𝑣

𝐿0 + 𝑣𝑡
 

 

• Solving the above equation gives the following result. For a constant rate of 
elongation, the point xB must be displaced exponentially over time. 

 

𝐿 = 𝐿0𝑒𝐷𝑡 
 

• Given endpoint displacements uA and uB, the total displacement is ΔL = uB – uA. 
Using this quantity, the stretch λ and the strain ε can be written using the 
equations below. 

 

𝜆 =
𝐿0 + ΔL

𝐿0
= 1 + 𝜀,          𝜀 =

Δ𝐿

𝐿0
 

 

• For the small strains (i.e. |ε| is much less than 1) that result from small stretches, 
some approximations can be made which reduce the force equation to the 
following form. 

 

𝐹 = 𝑐𝜂

𝑑𝜀

𝑑𝑡
 

 

 
Viscoelastic fiber models 

• Many biological materials exhibit viscoelastic behavior rather than elastic 
behavior. In viscoelastic systems, the force on a fiber with a constant length 
decreases over time and applying constant force causes the length to increase. 

• The strain response of a fiber to force is given as ε(t). The creep function J(t) 
describes the fiber’s tendency to permanently deform as strain is applied. Many 
possible creep functions can be devised depending on the system. The creep 
function is related to the strain by a factor of force increase F0. 

 

𝜀(𝑡) = 𝐽(𝑡)𝐹0 
 

• Strain responses follow the principle of superposition. That is, if a force is applied 
at τ1 and then another force is applied at τ2, a total strain response can be 
expressed as a sum of the two individual strain responses. 

 

𝜀(𝑡) = 𝜀1(𝑡) + 𝜀2(𝑡) = 𝐽(𝑡 − 𝜏1)𝐹1 + 𝐽(𝑡 − 𝜏2)𝐹2 



 

• For an arbitrary history of applied forces, an integral formulation of strain 
response is used. In this equation, the change in force at each infinitesimal time 
interval is multiplied by the creep function.  

 

𝜀(𝑡) = ∫ 𝐽(𝑡 − 𝜏)
𝑑𝐹

𝑑𝑡
𝑑𝜏

𝑡

−∞

 

 

• Similarly, the force resulting from an imposed strain history can be expressed as 
an integral where G is a function that describes the relaxation of the fiber with 
time (analogous to the creep function, but the opposite concept). 

 

𝐹(𝑡) = ∫ 𝐺(𝑡 − 𝜏)
𝑑𝜀

𝑑𝑡
𝑑𝜏

𝑡

−∞

 

 

(Oomens, Brekelmans, & Baaijens, 2009) 
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