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These notes will cover the basics of Lagrangian mechanics and Hamiltonian mechanics 
using linear oscillatory motion as a lens (including coupled oscillations). I will assume that 
the reader already has knowledge of Newtonian mechanics at the level of a typical 
introductory physics course. That said, these notes are targeted towards readers who want 
to apply mechanics in engineering disciplines. I will not go much into derivations or at all 
into proofs, but rather present mechanics as a tool for solving engineering problems.  

 

Lagrangian mechanics 
 
Overview of Lagrangian mechanics 
Although Newtonian mechanics is useful in many situations, there exist many mechanical 
systems for which Newtonian methods are difficult to apply. One way of circumventing a 
cumbersome Newtonian problem is to utilize the Lagrangian method instead.  
 
Lagrange’s method centers around a quantity known as the Lagrangian L. This quantity 
is equal to the system’s kinetic energy T minus the system’s potential energy V (see the 
first expression below). The Lagrangian is needed for a differential equation called the 
Euler-Lagrange equation (see the second expression below). Here, q represents the 
generalized coordinates of the system. The concept of generalized coordinates will be 
explained subsequently. As one example, q could equal the one-dimensional position x 
of a free particle. When the Euler-Lagrange equation is simplified, it reduces to a 
differential equation that describes the motion of the desired system. Solving that 
differential equation gives the equations of motion for the system. 
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Generalized coordinates 
Generalized coordinates qi are any set of independent coordinates that can uniquely 
specify the configuration of a system. Because they are independent variables, 
generalized coordinates cannot exhibit any functional relationship to each other. Because 
they specify the configuration of the system, if all the generalized coordinates are known, 
all positions of every part of the system can be found.  
 
In practice, generalized coordinates are typically displacements and angles. Cartesian 
coordinates, polar coordinates, and more can be equivalent to generalized coordinates. 
Note that one system can have many sets of generalized coordinates. However, it is 
typically most useful to choose a set that has the fewest possible generalized coordinates.  
 
When the fewest possible generalized coordinates are chosen, they can be used to 
determine the system’s configuration in any other coordinate system. For instance, 



consider a 2D pendulum with a particle at the end of a swinging rod of length p. One of 
the sets of generalized coordinates with the fewest possible variables consists of just θ, 
the angle between the pendulum and its equilibrium position (straight down). To obtain 
the Cartesian coordinates in terms of θ, one can use the expression (x, y) = (psinθ, 
pcosθ). As is clear from this example, the single generalized coordinate fully specifies the 
configuration of the pendulum system.   
 
To further explore generalized coordinate systems, some key examples of generalized 
coordinates are given in the following table. While there are infinite possible systems to 
explore, these examples should help to give some intuition regarding how to implement 
generalized coordinates. 
 

System Example of generalized coordinates 

Single free particle in 3D space 
 

r = x, y, z 

Two free particles in 3D space 
 

r1,2 = x1, y1, z1, x2, y2, z2  

N free particles in 3D space 
  

rj = xj, yj, zj 

2D pendulum with a mass at the end of a 
rod with length p 

θ = angle between pendulum and its 
equilibrium position 
 

2D pendulum with a 
second pendulum linked 
to the end of the first. 
The positions of the two 
masses at the joint and 
the end of the second 
pendulum are what must 
be specified. 

 

θ1, = angle between first part of pendulum 
and its equilibrium position, θ2 = angle 
between second part of pendulum and its 
equilibrium position 

Fixed 1D spring with a mass at the end x = the extension of the spring relative to 
its equilibrium position 

 
Lagrangian mechanics is typically most useful for constrained systems rather than 
unconstrained systems. To understand the meanings of constrained and unconstrained, 
realize that the cases of the systems above that are unconstrained include the free 
particle systems and the cases of the systems above that are constrained include the 
single 2D pendulum, the double 2D pendulum, and the 1D spring system.  
 
Using the Euler-Lagrange equation 
As mentioned earlier, employing the Euler-Lagrange equation first requires computing the 
Lagrangian L = T – V. Next, one must find the derivatives ∂L/∂q, ∂L/∂q ̣̇ . Note that, since q ̣̇  
is a time derivative of a position coordinate, it is a velocity variable. Once these derivatives 



are found, one must differentiate the result of ∂L/∂q ̣̇  with respect to time. Put these results 
back into the Euler Lagrange equation and simplify. This will produce a differential 
equation that describes the motion of the system. Solving the differential equation will 
give the system’s equations of motion. Note that it is often necessary to solve the resulting 
differential equation numerically. 
 
To further illustrate how to apply the Euler-Lagrange equation, consider the system of the 
fixed spring linked to a mass. The following series of equations shows how to find the 
differential equation describing this system. Recall that the kinetic energy of a moving 
mass is 0.5mv2 and the potential energy of a spring is 0.5kx2. 
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When applying the Lagrangian method, it is useful to understand ignorable coordinates. 
If a coordinate qi is ignorable, the corresponding generalized momentum pi = ∂L/∂q ̣̇ i must 
be constant. When the generalized momentum pi is constant, ∂L/∂qi = 0 for the 
generalized coordinate qi. Ignorable coordinates can simplify Lagrangian problems since 
L no longer depends on the ignorable coordinate q. However, it should be noted that q ̣̇  is 
not always a constant, so the Lagrangian often still depends on q ̣̇ . 
 
Another advantage of the Lagrangian method over the Newtonian method is that any set 
of generalized coordinates q can be transformed to a new set of generalized coordinates 
Q(q) where each new Qi is some function of the original q1 … qn and the Euler-Lagrange 
equations will still be valid with respect to the new coordinates. 
 

Linear oscillations 
 
Simple harmonic motion 
Simple harmonic motion (SHM) is an important type of oscillation which happens when 
the acceleration of a mass is linearly proportional to its displacement from an equilibrium 
position and is directed towards the equilibrium position. In SHM, there is no loss of 
energy. SHM in 1D is mathematically described by the following differential equation. 
Some examples of SHM include the oscillations of simple springs and pendulums. For a 
simple spring system, ω2 = k/m. For a simple pendulum system, ω2 = g/L. (The constant 
ω is the angular frequency). 



 
−𝜔2𝑥 = �̈� 

 
There are several equivalent ways of writing the solution to the SHM differential equation, 
each of which has benefits and drawbacks. The exponential solution to the SHM equation 
is the first expression given below. The sine and cosine solutions arise by using Euler’s 
formula eiωt = cos(t) + isin(t) and are given by the second expression below. B1 is the 
initial position and ωB2 is the initial velocity. 
 

𝑥(𝑡) = 𝐶1𝑒
𝑖𝜔𝑡 + 𝐶2𝑒
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𝑥(𝑡) = 𝐵1 cos(𝜔𝑡) + 𝐵2 sin(𝜔𝑡)  

 
Another equivalent way of writing the solution to the SHM equation is to use the phase-
shifted cosine solution. The phase-shifted cosine solution is given as the first equation 
below. Here, A is a constant describing the amplitude of the oscillations. The constant A 
can also be computed using the constants B1 and B2 which were described above. Finally, 
the solution to the SHM equation can be written as the real part of a complex exponential. 
This version of the solution is given by the second equation below.  
 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 − 𝛿) = √𝐵1
2 + 𝐵2
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𝑥(𝑡) = Re(𝑒𝑖(𝜔𝑡−𝛿)) 

 
To extend SHM to the 3D case, the differential equation describing the system is split into 
three independent differential equations for the x, y, and z directions. Solving these 
differential equations gives the equations of SHM for x, y, and z. The 2D case is the same, 
but with only two independent differential equations. There are a variety of interesting 
graphical phenomena that come out of plotting 2D and 3D SHM equations, especially 
when there are different values of ω, A, or δ for x, y, and z. 
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Damped oscillations 
When some force resists oscillatory motion (e.g. friction, air resistance, etc.), causing 
energy loss over time, the resulting system undergoes damped oscillations. This type of 
system is described by the differential equation where b is a damping constant (see the 
first expression below). To make later calculations easier, the differential equation can be 
rewritten with alternative constants 2β = b/m and ω0

2 = k/m. The general solution to this 
differential equation is given by the second formula below. 
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To understand the solution above, it is helpful to consider three cases: underdamping 
where β < ω0, overdamping where β > ω0, and critical damping where β = ω0. The solution 
above simplifies to different forms depending on whether β < ω0, β > ω0, or β = ω0. These 
results are summarized in the following table. After the table, plots of x(t) for the 
underdamped, overdamped, and critically damped cases are given. 
 
 

Underdamping 
𝛽 < 𝜔0 

𝑥(𝑡) = 𝐴𝑒−𝛽𝑡 cos((𝜔0
2 − 𝛽2)1/2𝑡 − 𝛿) 

Overdamping 
𝛽 > 𝜔0 𝑥(𝑡) = 𝐶1𝑒

−(𝛽−√𝛽2−𝜔0
2)𝑡
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Critical damping 
𝛽 = 𝜔0 

𝑥(𝑡) = 𝐶1𝑒
−𝛽𝑡 + 𝐶2𝑡𝑒

−𝛽𝑡 

 
 

 
 

Driven damped oscillations 
When an external force influences a damped oscillating system, driven damped 
oscillations occur. Mathematically, this is described by setting the differential equation for 
the damped oscillator equal to a function f(t) instead of zero. Here, f(t) represents the 
amount of external force acting on the system as a function of time. 
 

�̈� + 2𝛽�̇� + 𝜔0
2𝑥 = 𝑓(𝑡) 

 
To find the general solution to the above differential equation, one must first solve the 
differential equation where f(t) = 0. This solution, called the homogenous solution xh, is 
already known from the undriven damped oscillation case. Next, one must find the 
particular solution xp. The particular solution is any solution which solves the differential 
equation for the given nonzero force function f(t). The general solution to the differential 
equation of driven damped oscillations is equal to xh + xp. 
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solve   �̈� + 2𝛽�̇� + 𝜔0
2𝑥 = 𝑓(𝑡)   for given nonzero force  →   𝑥𝑝(𝑡) 

 
𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡) 

 
One useful special case to consider is when a driving force of the form f(t) = f0cos(ωt) is 
applied. In this case, f0 is the amplitude of the driving force divided by the oscillator’s mass 
and ω is the driving force’s frequency. Note that ω is a distinct parameter from the 
oscillation frequency ω0. The differential equation for this system and its general solution 
are given below. Note that the non-cosine term in the expression for x(t) is the 
homogenous solution. Because this non-cosine term decays over time, it only contributes 
to the waveform during the early stages of the oscillations. 
 

 �̈� + 2𝛽�̇� + 𝜔0
2𝑥 = 𝑓0 cos(𝜔𝑡) 

 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 − 𝛿) + 𝑒−𝛽𝑡 (𝐶1𝑒
𝑡√𝛽2−𝜔0

2

+ 𝐶2𝑒
−𝑡√𝛽2−𝜔0

2

) 

𝐴 =
𝑓0

√(𝜔0
2 − 𝜔2)2 + 4𝛽2𝜔2

,     𝛿 = arctan (
2𝛽𝜔

𝜔0
2 − 𝜔2

) 

 
Resonance 
Consider the previously described case of the driven damped oscillator where the driving 
force is a sinusoidal function (which includes cosine). More specifically, let β take on a 
fairly small value. In this situation, when the frequency ω of the driving force is close to 
the frequency of the oscillator ω0, the amplitude of the driven oscillations grows very large.  
 
The reason for this comes from the denominator of the 
amplitude A (see previous section). When β is small, the 
(ω0

2 – ω2)2 term is responsible for determining most of 
the value of the denominator. If ω0 and ω are close 
together, (ω0

2 – ω2)2 takes on a very small value. Since 
this term is in the denominator, a very small value leads 
to a very large amplitude A. This phenomenon is called 
resonance. To better understand resonance, see the plot 
of A2 versus ω at right. 
 
Resonance can be further characterized by computing the maximum amplitude Amax of 
oscillations where ω = ω0. This quantity is given by the following equation. 
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Another way to characterize resonance is by finding the quality factor or Q factor. The Q 
factor describes the sharpness of the resonance peak and is often defined by the equation 
below. Note that 2β approximately equals the full width at half maximum (FWHM), the 
width of the resonance peak where at A = Amax/2. When Q is large, the resonance peak 
is narrow and vice versa. The Q factor is also useful because Q/π = the number of cycles 
the oscillator makes during one decay time. The decay time is defined as the amount of 
time it takes for the amplitude to drop to 1/e of its initial value. 
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Finally, it can be useful to note that the phase shift at resonance is π/2. The reason for 
this is that ω0

2 – ω2 = 0 at resonance and the equation for the phase shift is arctan(2βω/( 
ω0

2 – ω2)). The zero in the denominator results in an arctangent of infinity, which equals 
π/2. 
 

Coupled linear oscillations 
 
Case of two masses linked by springs 
To understand coupled linear oscillations, it is often helpful to consider the case of two 
masses linked by springs that are fixed to walls as seen in the image below. Here, m1 and 
m2 refer to the masses and k1, k2, k3 are the spring constants. 
 

 
 

This system can be solved by Newtonian or Lagrangian methods. Here, the Lagrangian 
approach will be employed. Recall that the Lagrangian L = T – V. The kinetic energy T is 
found as the sum of the kinetic energies of the masses as shown in the first equation 
below. The potential energy V requires carefully evaluating the extensions of the springs. 
In this system, the respective extensions of the three springs are x1, x2 – x1, and –x2. 
Using this information and Hooke’s law Fs = –kx, the potential energy is given by the 
second equation below. The Lagrangian L is given by the third equation below. 
 

𝑇 =
1

2
𝑚1�̇�1

2 +
1

2
𝑚2�̇�2

2 

 

𝑉 =
1

2
𝑘1(−𝑥1)

2 +
1

2
𝑘2(−(𝑥2 − 𝑥1))

2
+

1

2
𝑘3(−(−𝑥2))

2
=

1

2
𝑘1𝑥1

2 +
1

2
𝑘2(𝑥1 − 𝑥2)

2 +
1

2
𝑘3𝑥2

2 

 

𝐿 = 𝑇 − 𝑉 =
1

2
𝑚1�̇�1

2 +
1

2
𝑚2�̇�2

2 −
1

2
𝑘1𝑥1

2 −
1

2
𝑘2(𝑥1 − 𝑥2)

2 −
1

2
𝑘3𝑥2

2 

 
Using the Euler-Lagrange equation (see the first equation below), the Lagrangian above 
reduces to the equations of motion for the system (see the second equation below). By 



rearranging the spring constants, these equations of motion can be written in matrix form 
(see the equivalent third and fourth equations below). 
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𝑚1�̈�1 = −(𝑘1 + 𝑘2)𝑥1 + 𝑘2𝑥2,     𝑚2�̈�2 = 𝑘2𝑥1 − (𝑘2 + 𝑘3)𝑥2 
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Solutions to this system of equations can be written in the complex form as seen below. 
Here, p1 and p2 are arbitrary constants and the actual motions of the masses are 
determined by Re(z(t)). Note that, although the frequency ω is assumed to be the same 
for z1(t) and z2(t), there are actually two solutions for ω (this will be explained 
subsequently). 
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By substituting the above equation into the matrix equation for the coupled oscillator 
system, the following eigenvalue equation for K can be obtained. 
 

det(𝑲 − 𝜔2𝑴) = 0 
 

det ([
𝑘1 + 𝑘2 − 𝜔2𝑚1 −𝑘2

−𝑘2 𝑘2 + 𝑘3 − 𝜔2𝑚2
]) = 0 

 
The characteristic polynomial which results after taking the above determinant is a 
quadratic equation with two solutions for ω2. As a result, there are two frequencies ω1 
and ω2 at which the masses can oscillate. These are called the normal frequencies of the 
system. The equations governing the motion of the system at each normal frequency are 
called the normal modes of the system. 
 
The general solution for the case of two masses linked by springs system is given as 
follows. The vectors are the eigenvectors from the eigenvalue equation of K. Note that 
this solution is a linear combination of the two normal mode solutions. As usual, the 
constants A1, A2, δ1, and δ2 are determined by initial conditions. 
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To better understand normal modes, it can be helpful to investigate the specific case 
where k1 = k2 = k3 = k and m1 = m2 = m. In this situation, the eigenvalue equation reduces 



to the first expression below. The normal frequencies are the solutions to this eigenvalue 
equation and are given by the second expression below.  
 

det(𝑲 − 𝜔2𝑴) = 0 = (2𝑘 − 𝑚𝜔2)2 − 𝑘2 
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Similarly, there are two normal frequencies for the general solution. However, the normal 
frequencies of the general solution are much more elaborate and so will not be written 
out here. If one needs the normal frequencies of the general solution, they can be 
obtained by solving its characteristic polynomial equation (most easily by using a 
computer algebra system). 
 
Going beyond the case of the two masses linked by springs, for a similar system with N 
coupled masses, there are N normal frequencies and the equation of motion for each 
mass consists of superpositions of N normal modes. This principle also extends to other 
types of oscillators such as coupled pendulums. 
 

Hamiltonian mechanics 
 
Overview of Hamiltonian mechanics 
To understand Hamiltonian mechanics, it can be helpful to first further examine 
Lagrangian mechanics. With Lagrangian mechanics, the n generalized position 
coordinates and their n derivatives define a set of possibilities called a state space. By 
using the Euler-Lagrange equation, the state space reduces to the equations of motion 
for the system. Each set of initial conditions then determines a unique path of the 
components of the system through state space.  
 
For Hamiltonian mechanics, it is also important to reiterate the generalized momentum 
where qi are the generalized coordinates of the system (see below). Note that, if qi are 
Cartesian coordinates, then the generalized momentum is equivalent to the usual 
momentum. 
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While Lagrangian mechanics employs n generalized position coordinates and their n 
derivatives, Hamiltonian mechanics instead uses n generalized position coordinates and 
n generalized momenta. These n generalized position coordinates and generalized 
momenta are called the phase space of the system. Each set of initial conditions 
determines a unique path of the components of the system through phase space.  
 
The Hamiltonian and Hamilton’s equations 



To achieve this, the Hamiltonian H and Hamilton’s equations are used. The Hamiltonian 
is a quantity that often holds equivalent to the total energy of the system. Here, pi are the 
generalized momenta, L is the Lagrangian, and q ̣̇ i are the generalized position 
coordinates. 
 

𝐻 = ∑𝑝𝑖𝑞�̇� − 𝐿
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When the relationship between the generalized coordinates and the underlying Cartesian 
coordinates is independent of time (often the case), the Hamiltonian is equal to the total 
energy as H = T + V. However, the above equation (more general) should be used when 
the conversion between the generalized coordinates and Cartesian coordinates might 
depend on time.  
 
Hamilton’s equations use the Hamiltonian to derive equations of motion for a system. By 
contrast to the Euler-Lagrange method which reduces a system with n degrees of 
freedom to n second-order differential equations, Hamilton’s method instead reduces a 
system to 2n first-order differential equations, which can sometimes be advantageous. 
Note that degrees of freedom are the number of independent parameters needed to 
define the state of a system. For many systems, the degrees of freedom are equal to the 
number of generalized coordinates (when this is the case, the system is called 
holonomic). Hamilton’s equations for i = 1, 2, 3… n are given as follows.  
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The results of Hamilton’s equations can be combined with each other to produce the 
equations of motion for a given system. 
 
Using Hamilton’s equations 
As an example of how to apply Hamilton’s equations, consider the system of two masses 
linked by three springs with fixed walls at the edges (see the image in the previous 
section). For this system, the Hamiltonian is equivalent to the total energy as H = T + V 
(since the only generalized coordinate is x, which is already a Cartesian coordinate and 
so does not depend on time to undergo conversion to Cartesian coordinates). The 
Hamiltonian is given by the first equation below. Hamilton’s equations and their results 
are given by the second, third, and fourth lines of the equations below. Recall that the 
derivative of momentum is equivalent to force. 
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As with the Lagrangian method, when applying Hamilton’s equations, it is useful to 
understand ignorable coordinates. If a coordinate qi is ignorable, the corresponding 
generalized momentum pi must be constant. When the generalized momentum pi is 
constant, –∂H/∂qi = ∂L/∂qi = 0 for the generalized coordinate qi. Note that, if a generalized 
coordinate is ignorable for the Lagrangian approach, it is also ignorable for the 
Hamiltonian approach and vice versa.  
 
Ignorable coordinates lead to an elegant simplification of the Hamiltonian. If a system has 
an ignorable coordinate q, then the Hamiltonian H will no longer depend on q and the 
corresponding momentum p will be absorbed into the Hamiltonian as a constant. As an 
example, consider a system with two generalized coordinates q1 and q2, but the q2 is an 
ignorable coordinate. The Hamiltonian will depend on H(q1, p1, k) where k = p2. As a 
result, each ignorable coordinate decreases the number of degrees of freedom by one 
when employing the Hamiltonian approach. By contrast, this is not always true for the 
Lagrangian approach since even if q is ignorable and p is a constant, q ̣̇  is not always a 
constant. 
 
An advantage of the Hamiltonian method over the Newtonian and Lagrangian methods 
is that Hamilton’s equations are even more flexible than the Euler-Lagrange equation 
when it comes to coordinate changes. Under certain conditions, changes of both 
generalized coordinates and generalized momenta of the forms Q(q,p) and P(q,p), 
preserve the validity of Hamilton’s equations (with respect to the new coordinates and 
momenta). When these changes preserve the validity of Hamilton’s equations, the 
changes are called canonical transformations. But as mentioned, canonical 
transformations only work under certain conditions. The conditions for a transformation 
to be canonical are given by the equations below. The subscripts denote variables which 
must be held constant for the formulas in parentheses. 
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The Hamiltonian method and phase space 
Another advantage of the Hamiltonian method over the Lagrangian method is that 
Hamilton’s equations are automatically of the form dz/dt = h(z). There are many 
mathematical tools available for working with differential equations of this form. One of 
the most important of these tools is phase space analysis. 



 
In Hamiltonian mechanics, the phase space vector is a 2n-dimensional vector z(q,p) 
where q is all of the generalized coordinates and p is all of the generalized momenta. 
Each value of z identifies a unique set of initial conditions for the system. With this 
notation, the equation h(z) is an expression of Hamilton’s equations as a first-order 
differential equation. Here, h is a vector of the functions fi = ∂H/∂pi and gi = –∂H/∂qi. 
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Trajectories in the phase space with axes given by the elements of z(q,p) are vital in 
Hamiltonian mechanics. Any point z0 at a time t0 defines a unique trajectory in phase 
space of z. Since phase space vectors have 2n elements, it is difficult to visualize phase 
space for systems with more than one generalized coordinate, though there are methods 
to aid such visualization.  
 
It is important to note that, for a given point in phase space, only a single trajectory can 
pass through that point across all times t. If there appear to be two trajectories crossing 
the same point, the trajectories must represent the same path looping back on itself. This 
property follows from Hamilton’s equations. 
 
As an example of a phase space trajectory, consider the one-dimensional harmonic 
oscillator. For this system, the Hamiltonian is H = T + V = p2/2m + 0.5mω2x2 where k = 
mω2. Hamilton’s equations give ẋ = ∂H/∂p = p/m 
and ṗ = ∂H/∂p = –mω2x. By differentiating ẋ to get 
ṗ/m, the equation of motion for the system is found 
as ẍ = –ω2x. The solution to this equation of motion 
is x = Acos(ωt – δ). As a result, the momentum of 
the system is given by p = mẋ = –mωAsin(ωt – δ). 
These expressions for x and p act as parametric 
equations that define phase space trajectories. The 
phase space trajectories for this system take the 
form of ellipses which each start from unique phase 
points (p,x) and which never cross over each other. 
Different values of A determine the unique 
trajectories. 
 
Reference: Taylor, J.R. (2005). Classical Mechanics. University Science Books. 


