When considering the fundamental substance of the universe, I am inclined to propose an information-based description. All physics may arise as a consequence of informatic processes. To unify this description with the experience of consciousness, I suggest that information and consciousness are synonymous. This would support panpsychism, the idea that “everything has at least some level of consciousness.”
To explain more completely, consider a rock. Any rock encodes information in its crystal structure. When sunlight hits the rock, energy is transferred into the atoms on the stone’s surface. From there, the energy propagates through the rock as heat. The pattern of thermal diffusion is dependent on factors such as the distribution of temperature in the rock at t=0 (immediately prior to contact with the sunlight), the relative densities and compositions of different parts of the rock, and the types of impurities present in the rock. As the sunlight shifts away from the rock, leaving it in shadow once again, heat begins to radiate back out. Depending on the processing inside the rock, the heat will radiate from different patches on its surface at different rates.
Now consider a human. When light contacts the human’s retina, a signal is transduced by opsin proteins and a cis-trans isomerization of the cofactor retinal. After several more steps, a signal encoding the pattern of light on the retina is transferred into the brain, where it is processed by an elaborate series of excitatory and inhibitory neural interactions. These neural processes take into account the individual’s past experiences, other sensory information, and more. The data is repeatedly transformed until it yields instructions for a motor response, perhaps turning the head away or blinking.
The rock and the human are similar in that they both are subsystems of the universe that take in data, transform it depending on internal structures, and generate some output. Of course, the rock does not experience the world in the same way that humans or even insects do. The rock’s experience is far more primitive. Compared to most biological organisms, rocks possess poor memories. The rock can store some hazy memories in its distribution of residual thermal energy from a previous encounter with heat, but these data are highly disorganized and difficult to retrieve in a form that resembles the original heat stimuli. Consequently, a rock probably lives “in the moment” and does not reflect upon its past experiences. Perhaps the stone experiences a fuzzy, often randomly changing, procession of sensations and mild swells of emotion, never really pausing to consider their implications.
By comparison, a human will experience more directed responses to specific stimuli. If a human sees someone she knows, some brain regions will be predictably activated. However, the human brain’s output is dependent on all current sensory information as well as its state at time t, leading to a colossal space of possible responses to an individual stimulus. The brain’s structure evolves over time as experiences accumulate, leading to variable responses even given identical sensory data. Unlike the rock, humans recall past events and so construct a continuous temporal context. With this context, humans can reflect upon their own experiences as well as predict future events.
Given these parallels between biological and non-biological information processing, I suggest that physical panpsychism may represent an accurate description of reality. This could provide a generalizable path to the neural correlates of consciousness, in which specific patterns of information are synonymous with specific conscious experiences. For instance, stable positive feedback loops might be involved in positive emotions like curiosity, excitement, and love. Of course, the human brain’s vast meshwork of data-transforming pathways gives rise to far more nuanced types of curiosity, excitement, and love than could be generated by an individual positive feedback loop. However, I would postulate that stable positive feedback loops could form the backbone for more complicated sentiments. It should be noted that some positive feedback loops can give rise to negative emotions (i.e. as in OCD). In these cases, the positive feedback might be coupled to other patterns of information which possess intrinsically unpleasant properties, overriding the intrinsic goodness of the loop. Another item to note is that positive feedback loops might only retain their pleasantness for as long as they are stable. If the loop can no longer reproduce or propagate its pattern (such as during habituation processes), the positive emotions may begin to fade. With this method of understanding consciousness, I argue that information structures may correspond to emotions in a quantifiable manner.