Author: logancollins

List of Biotechnology Companies to Watch

No Comments

PDF version: List of Biotechnology Companies to Watch – by Logan Thrasher Collins 


Nanobodies as therapeutics and as laboratory reagents.


AgeX Therapeutics

Treating aging using stem cell therapies, induced tissue regeneration, related methods.



Developing salt-tolerant rice for ocean agriculture.

Early stage as of May 2021.



Engineering microorganisms and enzymes to degrade environmental pollutants.

Funded by the Ferment Consortium of Ginkgo Bioworks.



Developing computer aided design tools for synthetic biology, making host cell lines for viral vector and biologics manufacturing, constructing genetic parts database.

One of the co-founders is Christopher Voigt.

James Collins is on the scientific advisory board.


Beam Therapeutics

Developing base editor technologies towards therapeutic applications.

David Liu and Feng Zhang are among the co-founders.


BioMarin Pharmaceutical

Enzyme replacement therapies for rare diseases.

During April 2021, announced a collaboration with the Allen Institute to develop AAV gene therapies for rare diseases of the brain.


Bionaut Labs

Microrobotics as a new paradigm for drug delivery.



Developing gene therapies to treat aging, offers tests for determining biological age.

Elizabeth Parrish (the company’s CEO) tested an experimental gene therapy on herself and reports positive results, though some people question whether the therapy actually worked.

George Church and Aubrey de Grey are on the scientific advisory board.

Anders Sandberg is the company’s ethics advisor.


Creative Biolabs

Custom services for antibody engineering, membrane protein production and characterization, bioconjugation, gene therapy development, viral vector engineering, cell therapy development, molecular dynamics simulations, drug development consulting, and more.


Dyno Therapeutics

Using deep learning to improve properties of AAV capsids as a platform technology for gene therapy.

George Church is one of the co-founders.


Editas Medicine

CRISPR-based gene therapy.

George Church, David Liu, Jennifer Doudna, Feng Zhang, and J. Keith Joung are the co-founders.


DNA origami imaging probes, fluorescence microscopy reagents.

First commercial application of DNA origami.


Services in artificial DNA synthesis, synthetic biology, antibodies, cell therapies, enzyme engineering, etc.


Ginkgo Bioworks

Synthetic biology, biomanufacturing, microorganism design, enzyme engineering, etc.

Acquired Gen9 in 2017.


Developing an mRNA-based SARS-CoV-2 vaccine which might protect from all possible variants of the virus.

Pivoted from original plan of developing cancer vaccines using the same technology.

Co-founded by Hannu Rajaniemi, who is also a successful science fiction author.

George Church is an advisor.


Neurotechnology, noninvasive brain-computer interfaces, invasive neural prostheses.

Some noninvasive products anticipated to be released during 2021.

Founded by Bryan Johnson who personally invested $54 million.

Raised an additional $53 million from outside investors.

Early goal is to help treat brain disease, has ambitions to enable human enhancement.



Peptide nanoparticles for targeted CRISPR-Cas gene therapy delivery, immunotherapy, hematological gene therapy, aging treatments.

Founded by Andre Watson.

Mammoth Biosciences

CRISPR-based diagnostics.

Jennifer Doudna is one of the co-founders.


System for barcoding protein therapeutics to enable high-throughput design and testing in complex environments, machine learning to optimize drug design.

George Church is one of the co-founders.


Biomedical technologies which utilize mRNA inside of lipid nanoparticles; application areas include drug discovery, drug development, and vaccines.

Major player in COVID-19 pandemic since it was one of the first companies which developed and distributed SARS-CoV-2 vaccines to the world.



High-bandwidth brain-machine interfaces, surgical robots which implant the interfaces in a manner resembling a sewing machine.

Early goal is to help treat brain disease, has ambitions to enable human enhancement.

Founded by Elon Musk and others, highly publicized by Elon Musk.

Has done testing on rats, pigs, monkeys, and other animals as of April 2021.



Portable medical imaging technologies which employ novel optoelectronics, lasers, and holographic systems.

Wearable imaging technologies which could be 1,000x cheaper than MRI and achieve similar or better results.

Has speculated that their technology might eventually allow telepathic communication.



3D tissue bioprinting for in vivo clinical applications, in vitro tissue models for disease modeling and toxicology.

Long-term goal is to print entire human organs for transplants.


Oxford Nanopore Technologies

Portable nanopore sequencing devices, high-throughput desktop nanopore sequencing devices, sample preparation kits.

The company states that they have the first and only nanopore DNA and RNA sequencing platform as of May 2021.



Genetically modified male insects which curb the reproduction of populations of their species in the wild, acting as a precise and environmentally friendly way of controlling dangerous pests that spread disease or destroy crops.

After years of battles with activists and regulatory bodies, the company will release 750 million genetically modified mosquitos in the Florida Keys (the first time this has been done in the U.S.) with the goal of reducing rates of illnesses such as yellow fever and dengue.  


Panacea Longevity

Enhancing longevity and health using a fasting-mimetic metabolite supplementation.

Early stage as of May 2021.


Mass-produced insect larvae as an affordable way of manufacturing recombinant proteins.

Early stage as of May 2021.

Repair Biotechnologies

Developing a cholesterol degrading platform therapy which can reverse atherosclerosis.

The CEO, who is known as Reason, is outspoken about the need to combat aging.

Has preclinical proof-of-concept as of May 2021.


New manufacturing platforms to service partners for development and scaling of gene therapies, cell therapies, vaccines, protein therapies, and more.

Received $800 million in funding during 2020.

Sherlock Biosciences

CRISPR-based diagnostics.

Feng Zhang is one of the co-founders.


Proteomics platform called SomaScan for protein biomarker discovery which aids researchers in the development of new diagnostics.

SomaScan is an aptamer-based platform which can simultaneously measure 7,000 protein biomarkers.

Founded by Larry Gold, who is the inventor of SELEX.

Twist Bioscience

Artificial DNA synthesis, synthetic biology.

Vault Pharma

Protein vault nanocompartments as a drug delivery platform to treat cancers and other diseases, protein vaults as a vaccine platform.

Co-founded by Leonard Rome.


Services in vector cloning, virus packaging, library construction, cell lines, etc.



Synthetic biology, metabolic engineering, biomanufacturing of materials and compounds as a substitute for chemical engineering practices.

64x Bio

High-throughput screening and computational design of new mammalian cell lines for manufacturing gene and cell therapies.

George Church and Pamela Silver are among the co-founders.

10x Genomics

Spatial transcriptomics, genomics, proteomics, immune cell profiling, etc.

Acquired ReadCoor and Cartana in 2020.

banner is a fluorescence microscopy image of adenovirus-infected mammalian cells and represents data generated by Logan Thrasher Collins

Notes on Quantum Mechanics

No Comments
PDF version: Notes on Quantum Mechanics – By Logan Thrasher Collins

The Schrödinger equation and wave functions

Overview of the Schrödinger equation and wave functions

Quantum mechanical systems are described in terms of wave functions Ψ(x,y,z,t). Unlike classical functions of motion, wave functions determine the probability that a given particle may occur in some region. The way that this is achieved involves integration and will be discussed later in these notes.

To find a wave function, one must solve the Schrödinger equation for the system in question. There are time-dependent and time-independent versions of the Schrödinger equation. The time-dependent version is given in 1D and 3D by the first pair of equations below and the time-independent version is given in 1D and 3D by the second pair of equations below. Here, ћ is h/2π (and h is Planck’s constant), V is the particle’s potential energy, E is the particle’s total energy, Ψ is a time dependent wave function, ψ is a time-independent wave function, and m is the mass of the particle. After this point, these notes will focus on 1D cases unless otherwise specified (it will often be relatively straightforward to extrapolate to the 3D case).

For a wave function to make physical sense, it needs to satisfy the constraint that its integral from –∞ to ∞ must equal 1. This reflects the probabilistic nature of quantum mechanics; the probability that a particle may be found anywhere in space must be 1. For this reason, one must usually find a (possibly complex) normalization constant A after finding the wave function solution to the Schrödinger equation. This is accomplished by solving the following integral for A. Here, Ψ* is the complex conjugate of the wave function without the normalization constant and Ψ is the wave function without the normalization constant.

To obtain solutions to the time-dependent Schrödinger equation, one must first solve the time-independent Schrödinger equation to get ψ(x). The general solution for the time-dependent Schrödinger equation is any linear combination of the product of ψ(x) with an exponential term (see below). The coefficients cn can be real or complex.

Physically, |cn|2 represents the probability that a measurement of the system’s energy would return a value of En. As such, an infinite sum of all the |cn|2 values is equal to 1. In addition, note that each Ψn(x,t) = ψn(x)e–iEnt/ is known as a stationary state. The reason these solutions are called stationary states is because the expectation values of measurable quantities are independent of time when the system is in a stationary state (as a result of the time-dependent term canceling out).

Using wave functions

Once a wave function is known, it can be used to learn about the given quantum mechanical system. Though wave functions specify the state of a quantum mechanical system, this state usually cannot undergo measurement without altering the system, so the wave function must be interpreted probabilistically. The way the probabilistic interpretation is achieved will be explained over the course of this section.

Before going further, it will be useful to understand some methods from probability. First, the expectation value is the average of all the possible outcomes of a measurement as weighted by their likelihood (it is not the most likely outcome as the name might suggest). Next, the standard deviation σ describes the spread of a distribution about an average value. Note that the square of the standard deviation is called the variance.

Equations for the expectation value and standard deviation are given as follows. The first equation computes the expectation value for a discrete variable j. Here, P(j) is the probability of measurement f(j) for a given j. The second equation is a convenient way to compute the standard deviation σ associated with the expectation value for j. The third equation computes the expectation value for a continuous function f(x). Here, ρ(x) is the probability density of x. When ρ(x) is integrated over an interval a to b, it gives the probability that measurement x will be found over that interval. The fourth equation the same as the second equation, but finds the standard deviation σ for the continuous variable x.

In quantum mechanics, operators are employed in place of measurable quantities such as position, momentum, and energy. These operators play a special role in the probabilistic interpretation of wave functions since they help one to compute an expectation value for the corresponding measurable quantity.

To compute the expectation value for a measurable quantity Q in quantum mechanics, the following equation is used. Here, Ψ is the time-dependent wave function, Ψ* is the complex conjugate of the time-dependent wave function, and Q̂ is the operator corresponding to Q.

Any quantum operator which corresponds to a classical dynamical variable can be expressed in terms of the momentum operator –iℏ(∂/∂x). By rewriting a given classical expression in terms of momentum p and then replacing every p within the expression by –iℏ(∂/∂x), the corresponding quantum operator is obtained. Below, a table of common quantum mechanical operators in 1D and 3D is given.

Heisenberg uncertainty principle

The Heisenberg uncertainty principle explains why quantum mechanics requires a probabilistic interpretation. According to the Heisenberg uncertainty principle, the more precisely the position of a particle is determined via some measurement, the less precisely its momentum can be known (and vice versa). The Heisenberg uncertainty principle is quantified by the following equation.

The reason for the Heisenberg uncertainty principle comes from the wave nature of matter (and not from the observer effect). For a sinusoidal wave, the wave itself is not really located at any particular site, it is instead spread out across the cycles of the sinusoid. For a pulse wave, the wave can be localized to the site of the pulse, but it does not really have a wavelength. There are also intermediate cases where the wavelength is somewhat poorly defined and the location is somewhat well-defined or vice-versa. Since the wavelength of a particle is related to the momentum by the de Broglie formula p = h/λ = 2πℏ/λ, this means that the interplay between the wavelength and the position applies to momentum and position as well. The Heisenberg uncertainty principle quantifies this interplay.

Some simple quantum mechanical systems

Infinite square well

The infinite square well is a system for which a particle’s V(x) = 0 when 0 ≤ x ≤ a and its V(x) = ∞ otherwise. Because the potential energy is infinite outside of the well, the probability of finding the particle there is zero. Inside the well, the time-independent Schrödinger equation is given as follows. This equation is the same as the classical simple harmonic oscillator.

For the infinite square well, certain boundary conditions apply. In order for the wave function to be continuous, the wave function must equal zero once it reaches the walls, so ψ(0) = ψ(a) = 0. The general solution to the infinite square well differential equation is given as the first equation below. The boundary condition ψ(0) = 0 is employed in the second equation below. Since the coefficient B = 0, there are only sine solutions to the equation. Furthermore, if ψ(a) = 0, then Asin(ka) = 0. This means that k = nπ/a (where n = 1, 2, 3…) as given by the third equation below. The fourth equation below shows that this set of values for k leads to a set of possible discrete energy levels for the system

To find the constant A, the wave function ψ = Asin(nπx/a) must undergo normalization. As mentioned earlier, normalization is achieved by setting the normalization integral equal to 1 and solving for the constant A. Note that the time-independent Schrödinger equation can be utilized in the normalization integral since the exponential component of the time-dependent Schrödinger equation would cancel anyways.

Using this information, the wave functions for the infinite square well particle system are obtained. The time-independent and time-dependent wave functions are both displayed below at left and right respectively.

This infinite set of wave functions has some important properties. They possess discrete energies that increase by a factor of n2 with each level (and n = 1 is the ground state). The wave functions are also orthonormal. This property is described by the following equation. Here, δmn is the Kronecker delta and is defined below.

Another important property of these wave functions is completeness. This means that any function can be expressed as a linear combination of the time-independent wave functions ψn. The reason for this remarkable property is that the general solution (see below) is equivalent to a Fourier series.

The first equation below can be employed to compute the nth coefficient cn. Here, f(x) = Ψ(x,0) which is an initial wave function. Note that the initial wave function can be any function Ψ(x,0) and the result will generate coefficients for that starting point. This first equation is derived using the orthonormality of the solution set. Note that the formula applies to most quantum mechanical systems since the properties of orthonormality and completeness hold for most quantum mechanical systems (though there are some exceptions). The second equation below computes the cn coefficients specifically for the infinite square well system.

Quantum harmonic oscillator

For the quantum harmonic oscillator, the potential energy in the Schrödinger equation is given by V(x) = 0.5kx2 = 0.5mω2x2. This means that the following time-independent Schrödinger equation needs to be solved.

There are two main methods for solving this differential equation. These include a ladder operator approach and a power series approach. Both of these methods are quite complicated and will not be covered here. The solutions for n = 0, 1, 2, 3, 4, 5 are given below. Here, Hn(y) is the nth Hermite polynomial. The first five Hermite polynomials and the corresponding energies for the system are given in the table. Note that the discrete energy levels for the quantum harmonic oscillator follow the form (n + 0.5)ћω.

As with any quantum mechanical system, the quantum harmonic oscillator is further described by the general time-dependent solution. To identify the coefficients cn for this general solution, Fourier’s trick is employed (see previous section) where f(x) is once again any initial wave function Ψ(x,0).

Quantum free particle

Though the classical free particle is a simple problem, there are some nuances which arise in the case of the quantum mechanical free particle which greatly complicate the system.

To start, the Schrödinger equation for the quantum free particle is given in the first equation below. Here, k = (2mE)0.5/ћ. Note that V(x) = 0 since there is no external potential acting on the particle. The second equation below is a general time-independent solution to the system in exponential form. The third equation below is the time-dependent solution to the system where the terms are multiplied by e–iEt/ћ. Realize that this general solution can be written as a single term by redefining k as ±(2mE)0.5/ћ. When k > 0, the solution is a wave propagating to the right. When k < 0, the solution is a wave propagating to the left.

The speed of these propagating waves can be found by dividing the coefficient of t (which is ћk2/2m) by the coefficient of x (which is k). Since this is speed, the direction of the wave does not matter, so one can take the absolute value of k. By contrast, the speed of a classical particle is found by solving E = 0.5mv2, which gives a puzzling result that is twice as fast as the quantum particle.

Another challenge associated with the quantum free particle is that its wave function is non-normalizable (as shown below). Because of this, one can conclude that free particles cannot exist in stationary states. Equivalently, free particles never exhibit definite energies.

To resolve these issues with the quantum free particle, it has been found that the wave function of a quantum free particle actually carries a range of energies and speeds known as a wave packet. The solution for this wave packet involves the integral given by the first equation below and a function ϕ(k) given by the second equation below. This second equation allows one to determine ϕ(k) to fit a desired initial wave function Ψ(x,0). It was obtained using a mathematical tool called Plancherel’s theorem.

The above solution to the quantum free particle is now normalizable. Furthermore, the issue with the speed of the quantum free particle having a value twice as large as the speed of the classical free particle is fixed by considering a phenomenon known as group velocity. The waveform of the particle is an oscillating sinusoid (see image). This waveform includes an envelope, which represents the overall shape of the oscillations rather than the individual ripples. The group velocity vg is the speed of this envelope while the phase velocity vp is the speed of the ripples. It can be shown using the definitions of phase velocity and group velocity (see below) that the group velocity is twice the phase velocity, resolving the problem with the particle speed. The group velocity of the envelope is thus what actually corresponds to the speed of the particle.

Interlude on bound states and scattering states

To review, the solutions to the Schrödinger equation for the infinite square well and quantum harmonic oscillator were normalizable and labeled by a discrete index n while the solution to the Schrödinger equation for the free particle was not normalizable and was labeled by a continuous variable k.

The solutions which are normalizable and labeled by a discrete index are known as bound states. The solutions which are not normalizable and are labeled by a continuous variable are known scattering states.

Bound states and scattering states are related to certain classical mechanical phenomena. Bound states correspond to a classical particle in a potential well where the energy is not large enough for the particle to escape the well. Scattering states correspond to a particle which might be influenced by a potential but has a large enough energy to pass through the potential without getting trapped.

In quantum mechanics, bound states occur when E < V(∞) and E < V(–∞) since the phenomenon of quantum tunneling allows quantum particles to leak through any finite potential barrier. Scattering states occur when E > V(∞) or E > V(–∞). Since most potentials go to zero at infinity or negative infinity, this simplifies to bound states happening when E < 0 and scattering states happening when E > 0.

The infinite square well and the quantum harmonic oscillator represent bound states since V(x) goes to ∞ when x → ±∞. By contrast, the quantum free particle represents a scattering state since V(x) = 0 everywhere. However, there are also potentials which can result in both bound and scattering states. These kinds of potentials will be explored in the following sections.

Delta-function well

Recall that the Dirac delta function δ(x) is an infinitely high and infinitely narrow spike at the origin with an area equal to 1 (the area is obtained by integrating). The spike appears at the point a along the x axis when δ(x – a) is used. One important property of the Dirac delta function is that f(x)δ(x – a) = f(a)δ(x – a). By integrating both sides of the equation of this property, one can obtain the following useful expression. Note that a ± ϵ is used as the bounds since any positive value ϵ will then allow the bounds to encompass the Dirac delta function spike.

The delta-function well is a potential of the form –αδ(x) where α is a positive constant. As a result, the time-independent Schrödinger equation for the delta-function well system is given as follows. This equation has solutions that yield bound states when E < 0 and scattering states when E > 0.

For the bound states where E < 0, the general solutions are given by equations below. The substitution κ is defined by the first equation below, the second equation below is the general solution for x < 0, and the third equation below is the general solution for x > 0. (Since E is assumed to have a negative value, κ is real and positive). Note that V(x) = 0 for x < 0 and x > 0. In the solution for x < 0, the Ae–κx term explodes as x → –∞, so A must equal zero. In the solution for x > 0, the Feκx term explodes as x → ∞, so F must equal zero.

To combine these equations, one must use appropriate boundary conditions at x = 0. For any quantum system, ψ is continuous and dψ/dt is continuous except at points where the potential is infinite. The requirement for ψ to exhibit continuity means that F = B at x = 0. As a result, the solution for the bound states can be concisely stated as follows. In addition, a plot of the delta-function well’s bound state time-independent wave function is given below.

The presence of the delta function influences the energy E. To find the energy, one can integrate the time-independent Schrödinger equation for the delta-function well system. By making the bounds of integration ±ϵ and then taking the limit as ϵ approaches zero, the integral works only on the negative spike of the delta function at x = 0. The result for the energy is at the end of the following set of equations.

As seen above, the delta-function well only exhibits a single bound state energy E. By normalizing the wave function ψ(x) = Be–κ|x|, the constant B is found (as seen in the first equation below). The second equation below describes the single bound state wave function and reiterates the single bound state energy associated with this wave function.

For the scattering states where E > 0, the general solutions are given by equations below. The substitution k is defined by the first equation below, the second equation below is the general solution for x < 0, and the third equation below is the general solution for x > 0. (Since E is assumed to have a positive value, k is real and positive). Note that V(x) = 0 for x < 0 and x > 0. None of the terms explode this time, so none of the terms can be ruled out as equal to zero.

As a consequence of the requirement for ψ(x) to be continuous at x = 0, the following equation involving the constants A, B, F, and G must hold true. This is the first boundary condition.

There is also a second boundary condition which involves dψ/dx. Recall the following step (see first equation below) from the process of integrating the Schrödinger equation. To implement this step, the derivatives of ψ(x) (see second equation below) are found and then the limits of these derivatives from the left and right directions are taken (see third equation below). Since ψ(0) = A + B as seen in the equation above, the second boundary condition can be given as the final equation below.

By rearranging the final equation above and substituting in a parameter β = mα/ћ2k, the following expression is obtained. This expression is a compact way of writing the second boundary condition.

These two boundary conditions provide two equations, but there are four unknowns in these equations (five unknowns if k is included). Despite this, the physical significance of the unknown constants can be helpful. When eikx is multiplied by the factor for time-dependence e–iEt/ћ, it gives rise to a wave propagating to the right. When e–ikx is multiplied by the factor for time-dependence e–iEt/ћ, it gives rise to a wave propagating to the left. As a result, the constants describe the amplitudes of various waves. A is the amplitude of a wave moving to the right on the x < 0 side of the delta-function potential, B is the amplitude of a wave moving to the left on the x < 0 side of the delta-function potential, F is the amplitude of a wave moving to the right on the x > 0 side of the delta-function potential, and G is the amplitude of a wave moving to the left on the x > 0 side of the delta-function potential.

In a typical experiment on this type of system, particles are fired from one side of the delta-function potential, the left or the right. If the particles are coming from the left (moving to the right), the term with G will equal zero. If the particles are coming from the right (moving to the left), the term with A will equal zero. This can be understood intuitively by examining the figure above.

As an example, for the case of particles fired from the left (moving to the right), A is the amplitude of the incident wave, B is the amplitude of the reflected wave, and F is the amplitude of the transmitted wave. The equations of the two boundary conditions are reiterated in the first line below. By solving these equations, the second line of expressions is found. Since the probability of finding a particle at a certain location is |Ψ|2, the relative probability R of an incident particle undergoing reflection and the relative probability T of an incident particle undergoing transmission are given by the third line of expressions below. 

Also for the example case of particles fired from the left (moving to the right), by substituting back from β = mα/ћ2k and k = (2mE)0.5/ћ to get the expressions in terms of energy, the following equations are obtained for the reflection and transmission relative probabilities.

By performing the same process, but with A = 0 instead of G = 0, corresponding equations can be found for the case of particles fired from the right (moving towards the left).

It is important to note that, since these scattering wave functions are not normalizable, they do not actually represent possible particle states. To solve this problem, one must construct normalizable linear combinations of the stationary states in a manner similar to that performed with the quantum free particle system. In this way, wave packets will occur and the actual particles will be described by the range of energies of the wave packets. Because the actual normalizable system exhibits a range of energies, the probabilities R and T should be thought of as approximate measures of reflection and transmission for particles with energies in the vicinity of E.

Finite square well

The finite square well is a system for which a particle’s V(x) = –V0 when –a ≤ x ≤ a and its V(x) = 0 otherwise. For this system, the Schrödinger equation is given as follows for the conditions x < –a, –a ≤ x ≤ a, and x > a. Note that the equations for x < –a and x > a are the same since V(x) = 0 in both cases (but the boundary conditions will differ as will be explained soon). As with the Delta-function potential well, the finite square well has both bound states (with E < 0) and scattering states (with E > 0). First, the bound states with E < 0 will be considered. In this case, the Schrödinger equations for the finite square well are as follows.

For the cases of x < –a and x > a where V(x) = 0, the general solutions to the Schrödinger equation are respectively Ae–κx + Beκx and Fe–κx + Geκx where A, B, F, and G are arbitrary constants. In the x < –a case, the Ae–κx term blows up as x → –∞, making this term physically invalid. As a result, the physically admissible solution is ψ(x) = Beκx. In the x > a case, the Geκx term blows up as as x → ∞, making this term physically invalid. As a result, the physically admissible solution is ψ(x) = Fe–κx. For the case of –a ≤ x ≤ a, the general solution to the Schrödinger equation is ψ(x) = Csin(lx) + Dcos(lx). Note that, because E must be greater than the minimum potential energy Vmin = –V0, the value of l ends up real and positive (even though E is also negative). These solutions are summarized by the following equations.

Since the potential V(x) = –V0 is an even function (symmetric about the y axis), one can choose to write the solutions to the wave function as either even or odd. This comes from some properties of the time-independent Schrödinger equation. Next, it is again important to constrain these solutions using the boundary conditions which require the continuity of ψ(x) and dψ/dx at ±a.

For the even solutions, the constant C in ψ(x) = Csin(lx) + Dcos(lx) is zero. Because C = 0, the remaining equation is the even function ψ(x) = Dcos(lx) for –a ≤ x ≤ a. So, the continuity of ψ(x) and dψ/dx at +a necessitates the following two equations to hold true. The third equation comes from dividing the second equation by the first equation to solve for κ.

For the odd solutions, the constant D in ψ(x) = Csin(lx) + Dcos(lx) is zero. Because D = 0, the remaining equation is the odd function ψ(x) = Dsin(lx) for –a ≤ x ≤ a. So, the continuity of ψ(x) and dψ/dx at +a necessitates the following two equations to hold true. The third equation comes from dividing the second equation by the first equation to solve for κ.

As κ and l are both functions of E, the κ = ltan(la) and κ = –lcot(la) equations can be solved for E. To do this, it is convenient to use the notation z = la and z0 = (a/ћ)(2mV0)0.5. Simplifying the κ = ltan(la) and κ = –lcot(la) equations using this notation gives the following results. These equations can be solved numerically for z or graphically for z by looking for points of intersection (after obtaining z, E is easily computed).

Let us consider the tan(z) equation. There are two limiting cases of interest. These include a well which is wide and deep and a well which is shallow and narrow. Though not included in these notes, similar calculations can be performed for the –cot(z) equation.

For a wide and deep well, the value of z0 is large. Intersections between the curves of tan(zn) and ((z0/zn)2 – 1)0.5 occur at nπ/2 for odd n and at nπ for even n. This leads to the following equations which describe values of En. From this outcome, it can be seen that infinite V0 results in the infinite square well case with an infinite number of bound states. However, for any finite square well, there are only a finite number of bound states.

For a shallow and narrow well, the value of z0 is small. As the value of z0 decreases, fewer and fewer bound states exist. Once z0 is smaller than π/2, there is only one bound state (which is an even bound state). Interestingly, no matter how small the well, this one bound state always persists.

The scattering states, which occur when E > 0, will now be considered. In this case, the Schrödinger equations for the finite square well are as follows.

The general solutions to the Schrödinger equation for the finite square well’s scattering states are as follows.

But recall that in a typical scattering experiment, particles are fired from one side of the delta-function potential, the left or the right. Here it will be assumed that the particles are fired from the left side of the well (moving towards the right). Note that similar calculations could be performed for the opposite case. With this assumption, one can realize that the coefficient A represents the incident (from the left) wave’s amplitude, the coefficient B represents the reflected wave’s amplitude, and the coefficient F represents the transmitted (to the right) wave’s amplitude. Finally, the coefficient G = 0 since there is not an incident wave from the right moving towards the left.

There are four boundary conditions, continuity of ψ(x) at ±a and continuity of dψ/dx at ±a. These boundary conditions yield the following equations.

With the above equations, one can eliminate C and D and subsequently solve the system for B and F. This yields the equations below for B and F.

As with the delta-function well, a transmission coefficient T = |F|2/|A|2 can be computed across the finite square well. Recall that T represents the probability of the particle undergoing transmission across the well (in this case when moving from the right side to the left side). The probability of the particle undergoing reflection is R = 1 – T.

Since 1/T equals the equation below, whenever the sine squared term is zero, the probability of transmission T = 1.

Recall that a sine (or sine squared) term is zero when the function inside of it equals nπ such that n is any integer.

Remarkably, the above equation is the same as the one which describes the infinite square well’s energies. But realize that, for the finite square well, this only holds in the case of T = 1.

Reference: Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to Quantum Mechanics (3rd ed.). Cambridge University Press. 10.1017/9781316995433

Cover image source:

Logan’s Blog

No Comments


More pages:

Art: Kosmik Kaleidoscope (unpublished poem), Kosmos/Bios/Electronicos – a digital art gallery, Machine Children (unpublished visual poem)My digital art sampling, The Neon Hymenopterans, The Octopoid Occupation

Biology: Notes on Drosophila’s view on insect vision, Notes on honeybee sensory neurobiology, Primer on the Biology of the Cerebral Cortex

Engineering and Biotechnology: Notes on a topological representation of branching neuronal morphologies, Notes on computer architecture, Notes on observing the cell in its native state imaging subcellular dynamics in multicellular organismsNotes on medicinal chemistry, Notes on nanoparticle physics, Notes on nanoparticle self-assembly, Notes on nanowires and nanoparticles in the nervous system, Notes on neural mass modelsNotes on nucleic acid bioconjugation, Notes on RNA-seq, Notes on two-photon microscopy, Notes on universal resilience patterns in complex networks, Notes on upconversion nanoparticles

Mathematics: Algebraic Graph Mappings, Method for m-Dimensional Integration, Modeling global influences on networks by embedding them in manifolds, Notes on abstract Algebra, Notes on Banach and Hilbert SpacesNotes on differential Geometry, Notes on dynamical Systems, Notes on topology

Miscellaneous: List of Exciting Fields, List of Some Interesting People, Topics of interest, Publications by Logan Thrasher Collins

Philosophy: Emotion as a property of information part 1: the physical basis for panpsychismEmotion as a property of information part 2: engineering joy, Existential purpose: an engineering perspective, Nine answers from Logan Thrasher Collins (interview), Panpsychic epistemology: a physical basis for knowledge and justification, Rational romanticism overviewTowards an objective theory of morality

Physics: Notes on the Drude Model, Notes on x-ray physics

main cover image source: “The Coming Age of De Novo Protein Design”

The Future of Biotechnology: Confluence of Next-Generation Experiment, Software, and Hardware for Deciphering and Rewriting Biological Systems

No Comments

PDF version: The Future of Biotechnology

Less than 250 years after the conclusion of the Enlightenment, we have reached a point in human history where science has given us seemingly mystical abilities. We interact across thousands of kilometers nigh-instantaneously, we hold millions of libraries of knowledge in the palms of our hands, and hosts of shining buildings tower into the sky. Despite popular conceptions of doom and gloom, we are healthier, more peaceful, and less impoverished than ever before (Pinker, 2018). Our medicines can perform miracles such as making the blind see (Kumar et al., 2016; Lu et al., 2020), repairing damaged organs (Attanasio et al., 2016; Fioretta et al., 2018), and eradicating smallpox and rinderpest (Njeumi et al., 2012; Willis, 1997). When reflecting on all that is possible today, Arthur C. Clarke’s famous statement that “any sufficiently advanced technology is indistinguishable from magic” takes on more truth now than ever. But the next revolution, the revolution where we decipher biological complexity and rewrite biology itself for the better, has only just begun.

The convergence of new experimental methods, software, and hardware may act as a driving force for deciphering complex biological systems at a vastly deeper level than ever before. Enormously data-intensive experimental techniques in areas such as spatial transcriptomics and high-resolution volume and video microscopy will provide the foundation for advancing our understanding of biological systems (Liao et al., 2021; McDole et al., 2018; Titze & Genoud, 2016; Vogt, 2020; Wan et al., 2019). Robotic laboratory automation may further enhance the throughput of such methods (Angelone et al., 2021; HamediRad et al., 2019; Holland & Davies, 2020). In the realm of software, artificial intelligence (AI) advances will facilitate interpretation of patterns in massive amounts of biological data (Motta et al., 2019; Scheffer et al., 2020; Topol, 2019). At its heart, AI is a technology which extracts patterns from data. This means that AI can automate the process of sifting through oceans of complex multidimensional data and isolating a manageable number of insights with relevance to human affairs. In addition to AI, detailed integrative simulation techniques will aid prediction and description of biological mechanisms (Bezaire et al., 2016; Billeh et al., 2020; Karr et al., 2012; Markram et al., 2015; Singharoy et al., 2019; Yu et al., 2016). Some examples of these include large-scale molecular dynamics (MD) simulations (Singharoy et al., 2019; Yu et al., 2016), kinetic simulations of whole cells (Karr et al., 2012), and neurobiological simulations with tens of thousands of detailed virtual neurons (Bezaire et al., 2016; Billeh et al., 2020; Markram et al., 2015). As essential supporting technologies for these software innovations, key hardware advances may take the forms of quantum computing architectures (Cao et al., 2019; Outeiral et al., 2021), neuroscience-optimized neuromorphic computing architectures (Brown et al., 2018; Indiveri et al., 2011; Schemmel et al., 2017), and neuromorphic tensor processing unit architectures (Bains, 2020). Quantum computing may support quantum mechanical MD simulations as well as MD simulations with more particles and longer timescales (Cao et al., 2019; Outeiral et al., 2021), neuroscience-optimized neuromorphic computing may support realistic brain simulations (Brown et al., 2018; Indiveri et al., 2011; Schemmel et al., 2017), and neuromorphic tensor processing unit architectures may support much more powerful AI (Bains, 2020). The advent of exascale supercomputing will also play a central role in aiding the outlined software methods for the biological sciences (Lee & Amaro, 2018; Service, 2018). These changes will facilitate massive enhancement of our ability to make accurate predictions of how biological systems behave.

The convergence of experimental methods, software, and hardware may further act as a driving force for rewriting complex biological systems in a scalable and reproducible manner. The previously mentioned hardware advances could enable a surge in computer-aided design (CAD) software for engineering biology with nanoscale precision. To design new biology, these CAD innovations particularly may leverage AI (Kriegman et al., 2020; Zielinski et al., 2020), in silico directed evolution (Benson et al., 2019; Kriegman et al., 2020), kinetic modeling of cellular signaling and metabolic networks (Karr et al., 2012; Zielinski et al., 2020), and molecular dynamics (Benson et al., 2019; Shi et al., 2017) as well as improved graphical user interfaces (Grun et al., 2015). On the experimental side, laboratory automation and novel experimental tools may align to rapidly synthesize, validate, and iteratively improve biological inventions (Angelone et al., 2021; Chao et al., 2015; HamediRad et al., 2019; Schneider, 2018). These changes will facilitate tremendous strides in our collective capacity to create entirely new biology and to interface this new biology with existing biology.

Advances in our capacity to decipher and rewrite biology will dramatically advance the biomedical sciences. For instance, immunotherapies have the potential to eventually cure most or all cancers (Eggermont et al., 2013; ‘Mac’ Cheever, 2008; Yong et al., 2017). Medical nanorobots, some of which will consist of an exciting material known as DNA origami (Jiang et al., 2019), may also contribute to cancer treatment (Tregubov et al., 2018) and treatment of other diseases. In the case of DNA origami especially, CAD and MD will likely play a significant role (Benson et al., 2019; Douglas et al., 2009; Shi et al., 2017). AI, classical MD, and quantum MD will also enable the creation of numerous protein-based nanomachines with diverse applications by enabling rational design of proteins which have sophisticated dynamics (Kuhlman & Bradley, 2019; Melo et al., 2018; Pirro et al., 2020). Experimental automation and computational methods involving AI and integrative simulations could enable extremely rapid responses in the form of treatments, vaccines, and diagnostics to future outbreaks of infectious disease (Angelone et al., 2021; Chao et al., 2015; Schneider, 2018; Singh et al., 2020). While the threat of antibiotic resistance is concerning, phage therapy and synthetic biology treatments may further combat future forms of bacterial infection (Collins et al., 2019; Kortright et al., 2019). AI may automate a large portion of biomedical image analysis in the clinical setting (Topol, 2019). Donor organ shortages may end with the advent of bioprinted replacement organs (Cui et al., 2017; Mir & Nakamura, 2017). CAD methods may help improve the quality of bioprinted organs (Fay, 2020). AI and integrative simulations might help unlock the secrets of aging, allowing development of treatments for aging as a disease. This could both greatly increase human longevity and greatly decrease the incidence of aging-related illnesses (Fontana et al., 2014; Zhavoronkov et al., 2019). Wearable medical devices such as electronic tattoos could monitor health and prevent tragedies by giving people early warnings before physiological dysfunctions occur (Jeong & Lu, 2019). These represent some of the many possible biomedical technologies which may make us happier and healthier in the relatively near future.

One biomedical technology which may particularly make gains throughout the coming decades is gene therapy. Through synthetic biology manufacturing techniques (Le et al., 2019), gene therapies may shake off their currently prohibitive level of expense. Multiscale computational methods for understanding the human body at general and personalized levels (through AI and integrative simulations), CRISPR tools (Doudna, 2020), and superior nanobiotechnology delivery systems (Lundstrom, 2018; Wang et al., 2019) may allow gene therapy to start treating complex polygenic disorders (Carlson-Stevermer et al., 2020). These factors may even someday enable genetic modifications which make the human body more suited to space colonization (Norman & Reiss, 2020). If political polarization declines and the specter of genetic inequality loses its imminence, gene therapy could even enhance cognitive abilities and empathy in humans. While these prospects may seem frightening to some, it is important to realize that even a few more highly intelligent and empathetic people may make dramatic positive changes in our world (Rinn & Bishop, 2015). Gene therapy may also make major contributions to increasing human longevity (Bernardes de Jesus et al., 2012). Gene therapy could result in many positive transformations to our lives and even help to preserve the long-term future of humanity.

Neurotechnology may also soon come of age. Connectomics techniques, AI, and integrative simulations may give far better understanding of how to treat brain diseases in precisely targeted ways (Bullmore & Sporns, 2009; Markram, 2006; Markram et al., 2015; Mizutani et al., 2019). In particular, nanoscale connectomics might soon undergo a revolution as 4th generation synchrotrons (Pacchioni, 2019) and the relatively cheap miniature synchrotrons called Lyncean Compact Light Sources (Hornberger et al., 2019) facilitate rapid imaging of brains at nanoscale resolution (Kuan et al., 2020). On the neuroelectronics side, brain-machine interfaces and electronic neural prostheses could treat traumatic brain injuries and sensory and motor ailments as well as extend human abilities to interface with the cloud and the physical environment (Acarón Ledesma et al., 2019; Flesher et al., 2016; Gaillet et al., 2020; Hampson et al., 2018; Liu et al., 2015; Musk, 2019). Optogenetic methods, which enable control of genetically modified neurons with pulses of light, might synergize with gene therapy to create much more precise and complex brain-computer interfaces (Balasubramaniam et al., 2018; Chen et al., 2018). Though currently in its infancy, neurotechnology will likely grow rapidly into a mature discipline which grants us new abilities in neuromedicine and beyond.

Novel biotechnologies will also have great influence on manufacturing and environmental conservation. Biological CAD methods, integrative simulations of metabolism and gene regulation, and laboratory automation may allow synthetic biology to create a panoply of new microorganisms which can cheaply and rapidly produce medicines (Meng & Ellis, 2020), nanostructures (Bhaskar & Lim, 2017; Furubayashi et al., 2020), and even useful macroscale materials (Tang et al., 2020). Engineered microorganisms may also act to clean up pollutants and greenhouse gases (Gong et al., 2016). Molecular CAD methods, MD simulations, and laboratory automation may further revolutionize manufacturing through the creation of artificial molecular factories (Krause & Feringa, 2020). These molecular factories could involve immobilizing optically programmable supramolecular complexes such as certain rotaxanes and catenanes (Bruns & Stoddart, 2014) on metal-organic frameworks or similar crystalline structures (Krause & Feringa, 2020). With these miniscule factories, the dream of molecularly or even atomically precise construction at scale might be in reach. In addition, molecular factories which clean up pollutants and greenhouse gases could also make great contributions to combatting environmental degradation (Aithal & Aithal, 2020; Subramanian et al., 2020). Another suite of emerging technologies for ecoengineering are gene drives. These propagate gene editing tools which modulate the reproduction of populations of mosquitos and other disease vectors, potentially helping to stop illnesses like malaria (Gantz et al., 2015; Noble et al., 2017). Synthetic biology may also provide “off switches” for these gene drives, preventing them from causing environmental problems if they get out of control (Xu et al., 2020). In the realm of food production, gene edited plants can be made more suited to vertical farming (Kwon et al., 2020; O’Sullivan et al., 2020), indoor farming on the moon or Mars (Cannon & Britt, 2019), or ocean-based agriculture (Simke, 2020). In vitro meat may eventually transform meat production into a much more sustainable industry while decreasing the prevalence of animal cruelty (Bryant & Barnett, 2020; Zhang et al., 2020). These innovations and others could go a long way towards combatting global challenges such as hunger and climate change.

The confluence of advances in experiment, software, and hardware will enable many exciting biotechnological changes in the coming decades. Clever new experimental techniques will couple with automation to produce oceans of biological data. AI and integrative simulations extract meaningful insights from those otherwise unmanageable data point oceans. Hardware advances in neuromorphic computing, quantum computing, and exascale supercomputing could enable the titanic computations necessary to push software to its full potential. With this trinity of drivers of scientific progress, a plethora of new biotechnologies may enter common use and radically transform how we live. Some major areas of impact for these biotechnologies will include biomedicine, neurotechnology, gene therapy, manufacturing, agriculture, environmental remediation, and space colonization. Some may raise objections about the risks of such rapid technological changes. To answer these objections, consider that any kind of human progress, technological or social, must involve missteps. Yet human ingenuity and determination corrects these missteps in an ever-evolving trajectory, leading to an overall better world. Technology will synergize with the indomitable human spirit to build a bright and beautiful future.


Acarón Ledesma, H., Li, X., Carvalho-de-Souza, J. L., Wei, W., Bezanilla, F., & Tian, B. (2019). An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 14(7), 645–657.

Aithal, S., & Aithal, P. S. (2020). Cleaning the Environment using Nanotechnology–A Review based Mega-Machine Design. Environmental Information Sciences: With Aspects on Allied Areas & Other Emerging Interdisciplinary Environmental Concerns” Edited by PK Paul et Al. Published by New Delhi Publishers, New Delhi, India, 13–40.

Angelone, D., Hammer, A. J. S., Rohrbach, S., Krambeck, S., Granda, J. M., Wolf, J., Zalesskiy, S., Chisholm, G., & Cronin, L. (2021). Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine. Nature Chemistry, 13(1), 63–69.

Ariella Simke. (2020). You May Find Salt-Tolerant Rice Growing In The Ocean By 2021. Forbes.

Attanasio, C., Latancia, M. T., Otterbein, L. E., & Netti, P. A. (2016). Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs. Tissue Engineering Part B: Reviews, 22(4), 330–340.

Bains, S. (2020). The business of building brains. Nature Electronics, 3(7), 348–351.

Balasubramaniam, S., Wirdatmadja, S. A., Barros, M. T., Koucheryavy, Y., Stachowiak, M., & Jornet, J. M. (2018). Wireless Communications for Optogenetics-Based Brain Stimulation: Present Technology and Future Challenges. IEEE Communications Magazine, 56(7), 218–224.

Benson, E., Lolaico, M., Tarasov, Y., Gådin, A., & Högberg, B. (2019). Evolutionary Refinement of DNA Nanostructures Using Coarse-Grained Molecular Dynamics Simulations. ACS Nano, 13(11), 12591–12598.

Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., & Blasco, M. A. (2012). Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Molecular Medicine, 4(8), 691–704.

Bezaire, M. J., Raikov, I., Burk, K., Vyas, D., & Soltesz, I. (2016). Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. ELife, 5, e18566.

Bhaskar, S., & Lim, S. (2017). Engineering protein nanocages as carriers for biomedical applications. NPG Asia Materials, 9(4), e371–e371.

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., Abbasi-Asl, R., Jia, X., Siegle, J. H., Olsen, S. R., Koch, C., Mihalas, S., & Arkhipov, A. (2020). Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron, 106(3), 388-403.e18.

Brown, A. D., Chad, J. E., Kamarudin, R., Dugan, K. J., & Furber, S. B. (2018). SpiNNaker: Event-Based Simulation—Quantitative Behavior. IEEE Transactions on Multi-Scale Computing Systems, 4(3), 450–462.

Bruns, C. J., & Stoddart, J. F. (2014). Rotaxane-Based Molecular Muscles. Accounts of Chemical Research, 47(7), 2186–2199.

Bryant, C., & Barnett, J. (2020). Consumer Acceptance of Cultured Meat: An Updated Review (2018–2020). In Applied Sciences  (Vol. 10, Issue 15).

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186.

Cannon, K. M., & Britt, D. T. (2019). Feeding One Million People on Mars. New Space, 7(4), 245–254.

Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferová, M., Kivlichan, I. D., Menke, T., Peropadre, B., Sawaya, N. P. D., Sim, S., Veis, L., & Aspuru-Guzik, A. (2019). Quantum Chemistry in the Age of Quantum Computing. Chemical Reviews, 119(19), 10856–10915.

Carlson-Stevermer, J., Das, A., Abdeen, A. A., Fiflis, D., Grindel, B. I., Saxena, S., Akcan, T., Alam, T., Kletzien, H., Kohlenberg, L., Goedland, M., Dombroe, M. J., & Saha, K. (2020). Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. Nature Communications, 11(1), 6277.

Chao, R., Yuan, Y., & Zhao, H. (2015). Building biological foundries for next-generation synthetic biology. Science China Life Sciences, 58(7), 658–665.

Chen, S., Weitemier, A. Z., Zeng, X., He, L., Wang, X., Tao, Y., Huang, A. J. Y., Hashimotodani, Y., Kano, M., Iwasaki, H., Parajuli, L. K., Okabe, S., Teh, D. B. L., All, A. H., Tsutsui-Kimura, I., Tanaka, K. F., Liu, X., & McHugh, T. J. (2018). Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science, 359(6376), 679 LP – 684.

Collins, L. T., Otoupal, P. B., Campos, J. K., Courtney, C. M., & Chatterjee, A. (2019). Design of a De Novo Aggregating Antimicrobial Peptide and a Bacterial Conjugation-Based Delivery System. Biochemistry, 58(11), 1521–1526.

Cui, H., Nowicki, M., Fisher, J. P., & Zhang, L. G. (2017). 3D Bioprinting for Organ Regeneration. Advanced Healthcare Materials, 6(1), 1601118.

Doudna, J. A. (2020). The promise and challenge of therapeutic genome editing. Nature, 578(7794), 229–236.

Douglas, S. M., Marblestone, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., & Shih, W. M. (2009). Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research, 37(15), 5001–5006.

Eggermont, A. M. M., Kroemer, G., & Zitvogel, L. (2013). Immunotherapy and the concept of a clinical cure. European Journal of Cancer, 49(14), 2965–2967.

Fay, C. D. (2020). Computer-Aided Design and Manufacturing (CAD/CAM) for Bioprinting BT  – 3D Bioprinting: Principles and Protocols (J. M. Crook (ed.); pp. 27–41). Springer US.

Fioretta, E. S., Dijkman, P. E., Emmert, M. Y., & Hoerstrup, S. P. (2018). The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 12(1), e323–e335.

Flesher, S. N., Collinger, J. L., Foldes, S. T., Weiss, J. M., Downey, J. E., Tyler-Kabara, E. C., Bensmaia, S. J., Schwartz, A. B., Boninger, M. L., & Gaunt, R. A. (2016). Intracortical microstimulation of human somatosensory cortex. Science Translational Medicine.

Fontana, L., Kennedy, B. K., Longo, V. D., Seals, D., & Melov, S. (2014). Medical research: treat ageing. Nature News, 511(7510), 405.

Furubayashi, M., Wallace, A. K., González, L. M., Jahnke, J. P., Hanrahan, B. M., Payne, A. L., Stratis-Cullum, D. N., Gray, M. T., Liu, H., Rhoads, M. K., & Voigt, C. A. (2020). Genetic Tuning of Iron Oxide Nanoparticle Size, Shape, and Surface Properties in Magnetospirillum magneticum. Advanced Functional Materials, n/a(n/a), 2004813.

Gaillet, V., Cutrone, A., Artoni, F., Vagni, P., Mega Pratiwi, A., Romero, S. A., Lipucci Di Paola, D., Micera, S., & Ghezzi, D. (2020). Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve. Nature Biomedical Engineering, 4(2), 181–194.

Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., & James, A. A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences, 112(49), E6736 LP-E6743.

Gong, F., Cai, Z., & Li, Y. (2016). Synthetic biology for CO2 fixation. Science China Life Sciences, 59(11), 1106–1114.

Grun, C., Werfel, J., Zhang, D. Y., & Yin, P. (2015). DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology. Journal of The Royal Society Interface, 12(111), 20150580.

HamediRad, M., Chao, R., Weisberg, S., Lian, J., Sinha, S., & Zhao, H. (2019). Towards a fully automated algorithm driven platform for biosystems design. Nature Communications, 10(1), 5150.

Hampson, R. E., Song, D., Robinson, B. S., Fetterhoff, D., Dakos, A. S., Roeder, B. M., She, X., Wicks, R. T., Witcher, M. R., Couture, D. E., Laxton, A. W., Munger-Clary, H., Popli, G., Sollman, M. J., Whitlow, C. T., Marmarelis, V. Z., Berger, T. W., & Deadwyler, S. A. (2018). Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. Journal of Neural Engineering, 15(3), 36014.

Holland, I., & Davies, J. A. (2020). Automation in the Life Science Research Laboratory   . In Frontiers in Bioengineering and Biotechnology   (Vol. 8, p. 1326).

Hornberger, B., Kasahara, J., Gifford, M., Ruth, R., & Loewen, R. (2019). A compact light source providing high-flux, quasi-monochromatic, tunable X-rays in the laboratory. Proc.SPIE, 11110.

Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., SAÏGHI, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., & Boahen, K. (2011). Neuromorphic Silicon Neuron Circuits   . In Frontiers in Neuroscience   (Vol. 5, p. 73).

Jeong, H., & Lu, N. (2019). Electronic tattoos: the most multifunctional but imperceptible wearables. Proc.SPIE, 11020.

Jiang, Q., Liu, S., Liu, J., Wang, Z.-G., & Ding, B. (2019). Rationally Designed DNA-Origami Nanomaterials for Drug Delivery In Vivo. Advanced Materials, 31(45), 1804785.

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival  Jr., B., Assad-Garcia, N., Glass, J. I., & Covert, M. W. (2012). A Whole-Cell Computational Model Predicts Phenotype from Genotype. Cell, 150(2), 389–401.

Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host & Microbe, 25(2), 219–232.

Krause, S., & Feringa, B. L. (2020). Towards artificial molecular factories from framework-embedded molecular machines. Nature Reviews Chemistry, 4(10), 550–562.

Kriegman, S., Blackiston, D., Levin, M., & Bongard, J. (2020). A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences, 117(4), 1853 LP – 1859.

Kuan, A. T., Phelps, J. S., Thomas, L. A., Nguyen, T. M., Han, J., Chen, C.-L., Azevedo, A. W., Tuthill, J. C., Funke, J., Cloetens, P., Pacureanu, A., & Lee, W.-C. A. (2020). Dense neuronal reconstruction through X-ray holographic nano-tomography. Nature Neuroscience, 23(12), 1637–1643.

Kuhlman, B., & Bradley, P. (2019). Advances in protein structure prediction and design. Nature Reviews Molecular Cell Biology, 20(11), 681–697.

Kumar, S. R. P., Markusic, D. M., Biswas, M., High, K. A., & Herzog, R. W. (2016). Clinical development of gene therapy: results and lessons from recent successes. Molecular Therapy – Methods & Clinical Development, 3, 16034.

Kwon, C.-T., Heo, J., Lemmon, Z. H., Capua, Y., Hutton, S. F., Van Eck, J., Park, S. J., & Lippman, Z. B. (2020). Rapid customization of Solanaceae fruit crops for urban agriculture. Nature Biotechnology, 38(2), 182–188.

Le, D. T., Radukic, M. T., & Müller, K. M. (2019). Adeno-associated virus capsid protein expression in Escherichia coli and chemically defined capsid assembly. Scientific Reports, 9(1), 18631.

Lee, C. T., & Amaro, R. (2018). Exascale Computing: A New Dawn for Computational Biology. Computing in Science & Engineering, 20(5), 18–25.

Liao, J., Lu, X., Shao, X., Zhu, L., & Fan, X. (2021). Uncovering an Organ’s Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends in Biotechnology, 39(1), 43–58.

Liu, J., Fu, T.-M., Cheng, Z., Hong, G., Zhou, T., Jin, L., Duvvuri, M., Jiang, Z., Kruskal, P., Xie, C., Suo, Z., Fang, Y., & Lieber, C. M. (2015). Syringe-injectable electronics. Nature Nanotechnology, 10, 629.

Lu, Y., Brommer, B., Tian, X., Krishnan, A., Meer, M., Wang, C., Vera, D. L., Zeng, Q., Yu, D., Bonkowski, M. S., Yang, J.-H., Zhou, S., Hoffmann, E. M., Karg, M. M., Schultz, M. B., Kane, A. E., Davidsohn, N., Korobkina, E., Chwalek, K., … Sinclair, D. A. (2020). Reprogramming to recover youthful epigenetic information and restore vision. Nature, 588(7836), 124–129.

Lundstrom, K. (2018). Viral Vectors in Gene Therapy. In Diseases (Vol. 6, Issue 2).

‘Mac’ Cheever, M. A. (2008). Twelve immunotherapy drugs that could cure cancers. Immunological Reviews, 222(1), 357–368.

Markram, H. (2006). The Blue Brain Project. Nature Reviews Neuroscience, 7, 153.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez, C. A., Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., Kahou, G. A. A., Berger, T. K., Bilgili, A., Buncic, N., Chalimourda, A., Chindemi, G., Courcol, J.-D., Delalondre, F., Delattre, V., … Schürmann, F. (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 163(2), 456–492.

McDole, K., Guignard, L., Amat, F., Berger, A., Malandain, G., Royer, L. A., Turaga, S. C., Branson, K., & Keller, P. J. (2018). In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level. Cell, 175(3), 859-876.e33.

Melo, M. C. R., Bernardi, R. C., Rudack, T., Scheurer, M., Riplinger, C., Phillips, J. C., Maia, J. D. C., Rocha, G. B., Ribeiro, J. V, Stone, J. E., Neese, F., Schulten, K., & Luthey-Schulten, Z. (2018). NAMD goes quantum: an integrative suite for hybrid simulations. Nature Methods, 15(5), 351–354.

Meng, F., & Ellis, T. (2020). The second decade of synthetic biology: 2010–2020. Nature Communications, 11(1), 5174.

Mir, T. A., & Nakamura, M. (2017). Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine. Tissue Engineering Part B: Reviews, 23(3), 245–256.

Mizutani, R., Saiga, R., Takeuchi, A., Uesugi, K., Terada, Y., Suzuki, Y., De Andrade, V., De Carlo, F., Takekoshi, S., Inomoto, C., Nakamura, N., Kushima, I., Iritani, S., Ozaki, N., Ide, S., Ikeda, K., Oshima, K., Itokawa, M., & Arai, M. (2019). Three-dimensional alteration of neurites in schizophrenia. Translational Psychiatry, 9(1), 85.

Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M., Loomba, S., Hennig, P., Wissler, H., & Helmstaedter, M. (2019). Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science, 366(6469), eaay3134.

Musk, E. (2019). An integrated brain-machine interface platform with thousands of channels. BioRxiv, 703801.

Njeumi, F., Taylor, W., Diallo, A., Miyagishima, K., Pastoret, P.-P., Vallat, B., & Traore, M. (2012). The long journey: a brief review of the eradication of rinderpest. Revue Scientifique et Technique (International Office of Epizootics), 31(3), 729–746.

Noble, C., Olejarz, J., Esvelt, K. M., Church, G. M., & Nowak, M. A. (2017). Evolutionary dynamics of CRISPR gene drives. Science Advances, 3(4), e1601964.

Norman, Z., & Reiss, M. J. (2020). Two Planets, One Species: Does a Mission to Mars Alter the Balance in Favour of Human Enhancement? BT  – Human Enhancements for Space Missions: Lunar, Martian, and Future Missions to the Outer Planets (K. Szocik (ed.); pp. 151–167). Springer International Publishing.

O’Sullivan, C. A., McIntyre, C. L., Dry, I. B., Hani, S. M., Hochman, Z., & Bonnett, G. D. (2020). Vertical farms bear fruit. Nature Biotechnology, 38(2), 160–162.

Outeiral, C., Strahm, M., Shi, J., Morris, G. M., Benjamin, S. C., & Deane, C. M. (2021). The prospects of quantum computing in computational molecular biology. WIREs Computational Molecular Science, 11(1), e1481.

Pacchioni, G. (2019). An upgrade to a bright future. Nature Reviews Physics, 1(2), 100–101.

Pinker, S. (2018). Enlightenment now: The case for reason, science, humanism, and progress. Penguin.

Pirro, F., Schmidt, N., Lincoff, J., Widel, Z. X., Polizzi, N. F., Liu, L., Therien, M. J., Grabe, M., Chino, M., Lombardi, A., & DeGrado, W. F. (2020). Allosteric cooperation in a de novo-designed two-domain protein. Proceedings of the National Academy of Sciences, 117(52), 33246 LP – 33253.

Rinn, A. N., & Bishop, J. (2015). Gifted Adults: A Systematic Review and Analysis of the Literature. Gifted Child Quarterly, 59(4), 213–235.

Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S., Hayworth, K. J., Huang, G. B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., Clements, J., Hubbard, P. M., Katz, W. T., Umayam, L., Zhao, T., Ackerman, D., Blakely, T., Bogovic, J., Dolafi, T., … Plaza, S. M. (2020). A connectome and analysis of the adult Drosophila central brain. ELife, 9, e57443.

Schemmel, J., Kriener, L., Müller, P., & Meier, K. (2017). An accelerated analog neuromorphic hardware system emulating NMDA- and calcium-based non-linear dendrites. 2017 International Joint Conference on Neural Networks (IJCNN), 2217–2226.

Schneider, G. (2018). Automating drug discovery. Nature Reviews Drug Discovery, 17(2), 97–113.

Service, R. F. (2018). Design for U.S. exascale computer takes shape. Science, 359(6376), 617 LP – 618.

Shi, Z., Castro, C. E., & Arya, G. (2017). Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations. ACS Nano, 11(5), 4617–4630.

Singh, E., Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. Journal of Genetic Engineering and Biotechnology, 18(1), 69.

Singharoy, A., Maffeo, C., Delgado-Magnero, K. H., Swainsbury, D. J. K., Sener, M., Kleinekathöfer, U., Vant, J. W., Nguyen, J., Hitchcock, A., Isralewitz, B., Teo, I., Chandler, D. E., Stone, J. E., Phillips, J. C., Pogorelov, T. V, Mallus, M. I., Chipot, C., Luthey-Schulten, Z., Tieleman, D. P., … Schulten, K. (2019). Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell, 179(5), 1098-1111.e23.

Subramanian, K. S., Karthika, V., Praghadeesh, M., & Lakshmanan, A. (2020). Nanotechnology for Mitigation of Global Warming Impacts BT  – Global Climate Change: Resilient and Smart Agriculture (V. Venkatramanan, S. Shah, & R. Prasad (eds.); pp. 315–336). Springer Singapore.

Tang, T.-C., An, B., Huang, Y., Vasikaran, S., Wang, Y., Jiang, X., Lu, T. K., & Zhong, C. (2020). Materials design by synthetic biology. Nature Reviews Materials.

Titze, B., & Genoud, C. (2016). Volume scanning electron microscopy for imaging biological ultrastructure. Biology of the Cell, 108(11), 307–323.

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56.

Tregubov, A. A., Nikitin, P. I., & Nikitin, M. P. (2018). Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chemical Reviews, 118(20), 10294–10348.

Vogt, N. (2020). X-ray connectomics. Nature Methods, 17(11), 1072.

Wan, Y., McDole, K., & Keller, P. J. (2019). Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annual Review of Cell and Developmental Biology, 35(1), 655–681.

Wang, D., Tai, P. W. L., & Gao, G. (2019). Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 18(5), 358–378.

Willis, N. J. (1997). Edward Jenner and the Eradication of Smallpox. Scottish Medical Journal, 42(4), 118–121.

Xu, X.-R. S., Bulger, E. A., Gantz, V. M., Klanseck, C., Heimler, S. R., Auradkar, A., Bennett, J. B., Miller, L. A., Leahy, S., Juste, S. S., Buchman, A., Akbari, O. S., Marshall, J. M., & Bier, E. (2020). Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives. Molecular Cell, 80(2), 246-262.e4.

Yong, C. S. M., Dardalhon, V., Devaud, C., Taylor, N., Darcy, P. K., & Kershaw, M. H. (2017). CAR T-cell therapy of solid tumors. Immunology & Cell Biology, 95(4), 356–363.

Yu, I., Mori, T., Ando, T., Harada, R., Jung, J., Sugita, Y., & Feig, M. (2016). Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. ELife, 5, e19274.

Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97, 443–450.

Zhavoronkov, A., Mamoshina, P., Vanhaelen, Q., Scheibye-Knudsen, M., Moskalev, A., & Aliper, A. (2019). Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Research Reviews, 49, 49–66.

Zielinski, D. C., Patel, A., & Palsson, B. O. (2020). The Expanding Computational Toolbox for Engineering Microbial Phenotypes at the Genome Scale. In Microorganisms  (Vol. 8, Issue 12).